723 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Unstructured Grid Generation Techniques and Software

    Get PDF
    The Workshop on Unstructured Grid Generation Techniques and Software was conducted for NASA to assess its unstructured grid activities, improve the coordination among NASA centers, and promote technology transfer to industry. The proceedings represent contributions from Ames, Langley, and Lewis Research Centers, and the Johnson and Marshall Space Flight Centers. This report is a compilation of the presentations made at the workshop

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    Pigasus : Python for IsoGeometric AnalysiS and Unified Simulations.

    Get PDF
    B-splines and NURBS (Non Uniform Rational B-splines) are widely used in CAD (Computer Aider Design) models. IGA (IsoGeometric Analysis) consists of using these functions to both define the geometry and represent the unknowns that are solution of a Partial Differential Equation, using the Finite Element principle. In this paper we present a new library, namely Πgasus , that was developped in order to bring a common framework between the users (especially physicists) and mathematicians. We want to provide a stable and robust framework, that handles complex geometries and models as it is the case in Plasma Physics. Physicists will be able to use the recent works and results obtained by mathematicians. Πgasus is a 1D, 2D and 3D Fortran code, interfaced with Python. It provides a Geometry module, a FEM (Finite Element Method) computational engine and a Visualization module

    Structural Shape Optimization Based On The Use Of Cartesian Grids

    Full text link
    Tesis por compendioAs ever more challenging designs are required in present-day industries, the traditional trial-and-error procedure frequently used for designing mechanical parts slows down the design process and yields suboptimal designs, so that new approaches are needed to obtain a competitive advantage. With the ascent of the Finite Element Method (FEM) in the engineering community in the 1970s, structural shape optimization arose as a promising area of application. However, due to the iterative nature of shape optimization processes, the handling of large quantities of numerical models along with the approximated character of numerical methods may even dissuade the use of these techniques (or fail to exploit their full potential) because the development time of new products is becoming ever shorter. This Thesis is concerned with the formulation of a 3D methodology based on the Cartesian-grid Finite Element Method (cgFEM) as a tool for efficient and robust numerical analysis. This methodology belongs to the category of embedded (or fictitious) domain discretization techniques in which the key concept is to extend the structural analysis problem to an easy-to-mesh approximation domain that encloses the physical domain boundary. The use of Cartesian grids provides a natural platform for structural shape optimization because the numerical domain is separated from a physical model, which can easily be changed during the optimization procedure without altering the background discretization. Another advantage is the fact that mesh generation becomes a trivial task since the discretization of the numerical domain and its manipulation, in combination with an efficient hierarchical data structure, can be exploited to save computational effort. However, these advantages are challenged by several numerical issues. Basically, the computational effort has moved from the use of expensive meshing algorithms towards the use of, for example, elaborate numerical integration schemes designed to capture the mismatch between the geometrical domain boundary and the embedding finite element mesh. To do this we used a stabilized formulation to impose boundary conditions and developed novel techniques to be able to capture the exact boundary representation of the models. To complete the implementation of a structural shape optimization method an adjunct formulation is used for the differentiation of the design sensitivities required for gradient-based algorithms. The derivatives are not only the variables required for the process, but also compose a powerful tool for projecting information between different designs, or even projecting the information to create h-adapted meshes without going through a full h-adaptive refinement process. The proposed improvements are reflected in the numerical examples included in this Thesis. These analyses clearly show the improved behavior of the cgFEM technology as regards numerical accuracy and computational efficiency, and consequently the suitability of the cgFEM approach for shape optimization or contact problems.La competitividad en la industria actual impone la necesidad de generar nuevos y mejores diseños. El tradicional procedimiento de prueba y error, usado a menudo para el diseño de componentes mecánicos, ralentiza el proceso de diseño y produce diseños subóptimos, por lo que se necesitan nuevos enfoques para obtener una ventaja competitiva. Con el desarrollo del Método de los Elementos Finitos (MEF) en el campo de la ingeniería en la década de 1970, la optimización de forma estructural surgió como un área de aplicación prometedora. El entorno industrial cada vez más exigente implica ciclos cada vez más cortos de desarrollo de nuevos productos. Por tanto, la naturaleza iterativa de los procesos de optimización de forma, que supone el análisis de gran cantidad de geometrías (para las se han de usar modelos numéricos de gran tamaño a fin de limitar el efecto de los errores intrínsecamente asociados a las técnicas numéricas), puede incluso disuadir del uso de estas técnicas. Esta Tesis se centra en la formulación de una metodología 3D basada en el Cartesian-grid Finite Element Method (cgFEM) como herramienta para un análisis numérico eficiente y robusto. Esta metodología pertenece a la categoría de técnicas de discretización Immersed Boundary donde el concepto clave es extender el problema de análisis estructural a un dominio de aproximación, que contiene la frontera del dominio físico, cuya discretización (mallado) resulte sencilla. El uso de mallados cartesianos proporciona una plataforma natural para la optimización de forma estructural porque el dominio numérico está separado del modelo físico, que podrá cambiar libremente durante el procedimiento de optimización sin alterar la discretización subyacente. Otro argumento positivo reside en el hecho de que la generación de malla se convierte en una tarea trivial. La discretización del dominio numérico y su manipulación, en coalición con la eficiencia de una estructura jerárquica de datos, pueden ser explotados para ahorrar coste computacional. Sin embargo, estas ventajas pueden ser cuestionadas por varios problemas numéricos. Básicamente, el esfuerzo computacional se ha desplazado. Del uso de costosos algoritmos de mallado nos movemos hacia el uso de, por ejemplo, esquemas de integración numérica elaborados para poder capturar la discrepancia entre la frontera del dominio geométrico y la malla de elementos finitos que lo embebe. Para ello, utilizamos, por un lado, una formulación de estabilización para imponer condiciones de contorno y, por otro lado, hemos desarrollado nuevas técnicas para poder captar la representación exacta de los modelos geométricos. Para completar la implementación de un método de optimización de forma estructural se usa una formulación adjunta para derivar las sensibilidades de diseño requeridas por los algoritmos basados en gradiente. Las derivadas no son sólo variables requeridas para el proceso, sino una poderosa herramienta para poder proyectar información entre diferentes diseños o, incluso, proyectar la información para crear mallas h-adaptadas sin pasar por un proceso completo de refinamiento h-adaptativo. Las mejoras propuestas se reflejan en los ejemplos numéricos presentados en esta Tesis. Estos análisis muestran claramente el comportamiento superior de la tecnología cgFEM en cuanto a precisión numérica y eficiencia computacional. En consecuencia, el enfoque cgFEM se postula como una herramienta adecuada para la optimización de forma.Actualment, amb la competència existent en la industria, s'imposa la necessitat de generar nous i millors dissenys . El tradicional procediment de prova i error, que amb freqüència es fa servir pel disseny de components mecànics, endarrereix el procés de disseny i produeix dissenys subòptims, pel que es necessiten nous enfocaments per obtindre avantatge competitiu. Amb el desenvolupament del Mètode dels Elements Finits (MEF) en el camp de l'enginyeria en la dècada de 1970, l'optimització de forma estructural va sorgir com un àrea d'aplicació prometedora. No obstant això, a causa de la natura iterativa dels processos d'optimització de forma, la manipulació dels models numèrics en grans quantitats, junt amb l'error de discretització dels mètodes numèrics, pot fins i tot dissuadir de l'ús d'aquestes tècniques (o d'explotar tot el seu potencial), perquè al mateix temps els cicles de desenvolupament de nous productes s'estan acurtant. Esta Tesi se centra en la formulació d'una metodologia 3D basada en el Cartesian-grid Finite Element Method (cgFEM) com a ferramenta per una anàlisi numèrica eficient i sòlida. Esta metodologia pertany a la categoria de tècniques de discretització Immersed Boundary on el concepte clau és expandir el problema d'anàlisi estructural a un domini d'aproximació fàcil de mallar que conté la frontera del domini físic. L'utilització de mallats cartesians proporciona una plataforma natural per l'optimització de forma estructural perquè el domini numèric està separat del model físic, que podria canviar lliurement durant el procediment d'optimització sense alterar la discretització subjacent. A més, un altre argument positiu el trobem en què la generació de malla es converteix en una tasca trivial, ja que la discretització del domini numèric i la seua manipulació, en coalició amb l'eficiència d'una estructura jeràrquica de dades, poden ser explotats per estalviar cost computacional. Tot i això, estos avantatges poden ser qüestionats per diversos problemes numèrics. Bàsicament, l'esforç computacional s'ha desplaçat. De l'ús de costosos algoritmes de mallat ens movem cap a l'ús de, per exemple, esquemes d'integració numèrica elaborats per poder capturar la discrepància entre la frontera del domini geomètric i la malla d'elements finits que ho embeu. Per això, fem ús, d'una banda, d'una formulació d'estabilització per imposar condicions de contorn i, d'un altra, desevolupem noves tècniques per poder captar la representació exacta dels models geomètrics Per completar la implementació d'un mètode d'optimització de forma estructural es fa ús d'una formulació adjunta per derivar les sensibilitats de disseny requerides pels algoritmes basats en gradient. Les derivades no són únicament variables requerides pel procés, sinó una poderosa ferramenta per poder projectar informació entre diferents dissenys o, fins i tot, projectar la informació per crear malles h-adaptades sense passar per un procés complet de refinament h-adaptatiu. Les millores proposades s'evidencien en els exemples numèrics presentats en esta Tesi. Estes anàlisis mostren clarament el comportament superior de la tecnologia cgFEM en tant a precisió numèrica i eficiència computacional. Així, l'enfocament cgFEM es postula com una ferramenta adient per l'optimització de forma.Marco Alacid, O. (2017). Structural Shape Optimization Based On The Use Of Cartesian Grids [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86195TESISCompendi

    Ισογεωμετρική Στατική Ανάλυση με T-SPLines

    Get PDF
    Σκοπός αυτής της διπλωματικής είναι η διερεύνηση της ισογεωμετρικής στατικής ανάλυσης χρησιμοποιώντας ΄ενα νέο έιδος συναρτήσεων σχήματος , τις T-SPLines. Τόσο οι T-SPLines όσο και η ανάλυση πεπερασμένων στοιχείων εετάστηκαν ξεχωριστά αφού αποτελούν τις δύο συνιστώσες της ισογεωμετρικής μεθόδου. Τα θέματα που εξετάστηκαν είναι οι T-SPLines και οι ιδιότητές τους, οι τεχνικές πύκνωσης του δικτύου , η μόρφωση του μητρώου στιβαρότητας, η επεξεργασία των αποτελεσμάτων της ανάλυσης (πεδίο μετατοπίσεων, τάσεων και παραμορφώσεων) και εφαρμογές 2Δ για τη διερεύνηση διαφόρων φορέων.The scope of this thesis if the investigation of static isogeometric analysis unsing a new type of shape functions T-SPLines. T-SPLines and finite elements have been examined separately, as the two components of the isogeometric method. The topics considered are T-SPLine formulation and properties, refinement techniques, stiffness matrix formulation , result post-processing (displacement, stress and strain field) and linear 2D applications investigating models of various representations.Δημήτριος Γ. Τσαπέτη
    corecore