5 research outputs found

    Network-on-Chip -based Multi-Processor System-on-Chip: Towards Mixed-Criticality System Certification

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Providing Integrity in Real-Time Networks-on-Chip

    Get PDF
    Mixed-critical real-time systems must meet strict integrity, resilience and timing constraints, as specified by safety standards. Due to the increasing threat of random hardware faults, efficiently achieving high reliability and dependability calls for cross-layer fault-tolerance solutions. This work introduces the Advanced Integrity Q-service (AIQ), a mechanism to ensure the integrity and predictability of on-Chip communication under random hardware faults. Devised for cross-layer and hierarchical fault-tolerance solutions, AIQ realizes low-overhead error detection in hardware and delegates error handling to arbitrary strategies in software. Experimental evaluation featuring benchmark applications and an industrial avionics use case shows that AIQ operates with high reliability and availability and low hardware and performance overheads. In a many-core mixed-critical platform under expected real-time scenarios, AIQ performs with execution time overhead between 1.4% and 7.1%

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included
    corecore