6,221 research outputs found

    State Classification of Cooking Objects Using a VGG CNN

    Full text link
    In machine learning, it is very important for a robot to know the state of an object and recognize particular desired states. This is an image classification problem that can be solved using a convolutional neural network. In this paper, we will discuss the use of a VGG convolutional neural network to recognize those states of cooking objects. We will discuss the uses of activation functions, optimizers, data augmentation, layer additions, and other different versions of architectures. The results of this paper will be used to identify alternatives to the VGG convolutional neural network to improve accuracy.Comment: 5 Pages, 4 Figure

    Does Haze Removal Help CNN-based Image Classification?

    Full text link
    Hazy images are common in real scenarios and many dehazing methods have been developed to automatically remove the haze from images. Typically, the goal of image dehazing is to produce clearer images from which human vision can better identify the object and structural details present in the images. When the ground-truth haze-free image is available for a hazy image, quantitative evaluation of image dehazing is usually based on objective metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). However, in many applications, large-scale images are collected not for visual examination by human. Instead, they are used for many high-level vision tasks, such as automatic classification, recognition and categorization. One fundamental problem here is whether various dehazing methods can produce clearer images that can help improve the performance of the high-level tasks. In this paper, we empirically study this problem in the important task of image classification by using both synthetic and real hazy image datasets. From the experimental results, we find that the existing image-dehazing methods cannot improve much the image-classification performance and sometimes even reduce the image-classification performance

    Hybrid Noise Removal in Hyperspectral Imagery With a Spatial-Spectral Gradient Network

    Full text link
    The existence of hybrid noise in hyperspectral images (HSIs) severely degrades the data quality, reduces the interpretation accuracy of HSIs, and restricts the subsequent HSIs applications. In this paper, the spatial-spectral gradient network (SSGN) is presented for mixed noise removal in HSIs. The proposed method employs a spatial-spectral gradient learning strategy, in consideration of the unique spatial structure directionality of sparse noise and spectral differences with additional complementary information for better extracting intrinsic and deep features of HSIs. Based on a fully cascaded multi-scale convolutional network, SSGN can simultaneously deal with the different types of noise in different HSIs or spectra by the use of the same model. The simulated and real-data experiments undertaken in this study confirmed that the proposed SSGN performs better at mixed noise removal than the other state-of-the-art HSI denoising algorithms, in evaluation indices, visual assessments, and time consumption.Comment: Accept by IEEE TGR

    Single Image Reflection Removal Using Deep Encoder-Decoder Network

    Full text link
    Image of a scene captured through a piece of transparent and reflective material, such as glass, is often spoiled by a superimposed layer of reflection image. While separating the reflection from a familiar object in an image is mentally not difficult for humans, it is a challenging, ill-posed problem in computer vision. In this paper, we propose a novel deep convolutional encoder-decoder method to remove the objectionable reflection by learning a map between image pairs with and without reflection. For training the neural network, we model the physical formation of reflections in images and synthesize a large number of photo-realistic reflection-tainted images from reflection-free images collected online. Extensive experimental results show that, although the neural network learns only from synthetic data, the proposed method is effective on real-world images, and it significantly outperforms the other tested state-of-the-art techniques

    Denoising of 3-D Magnetic Resonance Images Using a Residual Encoder-Decoder Wasserstein Generative Adversarial Network

    Full text link
    Structure-preserved denoising of 3D magnetic resonance imaging (MRI) images is a critical step in medical image analysis. Over the past few years, many algorithms with impressive performances have been proposed. In this paper, inspired by the idea of deep learning, we introduce an MRI denoising method based on the residual encoder-decoder Wasserstein generative adversarial network (RED-WGAN). Specifically, to explore the structure similarity between neighboring slices, a 3D configuration is utilized as the basic processing unit. Residual autoencoders combined with deconvolution operations are introduced into the generator network. Furthermore, to alleviate the oversmoothing shortcoming of the traditional mean squared error (MSE) loss function, the perceptual similarity, which is implemented by calculating the distances in the feature space extracted by a pretrained VGG-19 network, is incorporated with the MSE and adversarial losses to form the new loss function. Extensive experiments are implemented to assess the performance of the proposed method. The experimental results show that the proposed RED-WGAN achieves performance superior to several state-of-the-art methods in both simulated and real clinical data. In particular, our method demonstrates powerful abilities in both noise suppression and structure preservation.Comment: To appear on Medical Image Analysis. 29 pages, 15 figures, 7 table

    Variational based Mixed Noise Removal with CNN Deep Learning Regularization

    Full text link
    In this paper, the traditional model based variational method and learning based algorithms are naturally integrated to address mixed noise removal problem. To be different from single type noise (e.g. Gaussian) removal, it is a challenge problem to accurately discriminate noise types and levels for each pixel. We propose a variational method to iteratively estimate the noise parameters, and then the algorithm can automatically classify the noise according to the different statistical parameters. The proposed variational problem can be separated into regularization, synthesis, parameter estimation and noise classification four steps with the operator splitting scheme. Each step is related to an optimization subproblem. To enforce the regularization, the deep learning method is employed to learn the natural images priori. Compared with some model based regularizations, the CNN regularizer can significantly improve the quality of the restored images. Compared with some learning based methods, the synthesis step can produce better reconstructions by analyzing the recognized noise types and levels. In our method, the convolution neutral network (CNN) can be regarded as an operator which associated to a variational functional. From this viewpoint, the proposed method can be extended to many image reconstruction and inverse problems. Numerical experiments in the paper show that our method can achieve some state-of-the-art results for mixed noise removal

    U-Finger: Multi-Scale Dilated Convolutional Network for Fingerprint Image Denoising and Inpainting

    Full text link
    This paper studies the challenging problem of fingerprint image denoising and inpainting. To tackle the challenge of suppressing complicated artifacts (blur, brightness, contrast, elastic transformation, occlusion, scratch, resolution, rotation, and so on) while preserving fine textures, we develop a multi-scale convolutional network, termed U- Finger. Based on the domain expertise, we show that the usage of dilated convolutions as well as the removal of padding have important positive impacts on the final restoration performance, in addition to multi-scale cascaded feature modules. Our model achieves the overall ranking of No.2 in the ECCV 2018 Chalearn LAP Inpainting Competition Track 3 (Fingerprint Denoising and Inpainting). Among all participating teams, we obtain the MSE of 0.0231 (rank 2), PSNR 16.9688 dB (rank 2), and SSIM 0.8093 (rank 3) on the hold-out testing set.Comment: ECCV 2018 Track-3 Challenge Inpainting to denoise fingerprin

    Toward Convolutional Blind Denoising of Real Photographs

    Full text link
    While deep convolutional neural networks (CNNs) have achieved impressive success in image denoising with additive white Gaussian noise (AWGN), their performance remains limited on real-world noisy photographs. The main reason is that their learned models are easy to overfit on the simplified AWGN model which deviates severely from the complicated real-world noise model. In order to improve the generalization ability of deep CNN denoisers, we suggest training a convolutional blind denoising network (CBDNet) with more realistic noise model and real-world noisy-clean image pairs. On the one hand, both signal-dependent noise and in-camera signal processing pipeline is considered to synthesize realistic noisy images. On the other hand, real-world noisy photographs and their nearly noise-free counterparts are also included to train our CBDNet. To further provide an interactive strategy to rectify denoising result conveniently, a noise estimation subnetwork with asymmetric learning to suppress under-estimation of noise level is embedded into CBDNet. Extensive experimental results on three datasets of real-world noisy photographs clearly demonstrate the superior performance of CBDNet over state-of-the-arts in terms of quantitative metrics and visual quality. The code has been made available at https://github.com/GuoShi28/CBDNet

    RARE: Image Reconstruction using Deep Priors Learned without Ground Truth

    Full text link
    Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets (CNNs). In this work, we propose to broaden the current denoiser-centric view of RED by considering priors corresponding to networks trained for more general artifact-removal. The key benefit of the proposed family of algorithms, called regularization by artifact-removal (RARE), is that it can leverage priors learned on datasets containing only undersampled measurements. This makes RARE applicable to problems where it is practically impossible to have fully-sampled groundtruth data for training. We validate RARE on both simulated and experimentally collected data by reconstructing a free-breathing whole-body 3D MRIs into ten respiratory phases from heavily undersampled k-space measurements. Our results corroborate the potential of learning regularizers for iterative inversion directly on undersampled and noisy measurements.Comment: In press for IEEE Journal of Special Topics in Signal Processin

    A Cascaded Convolutional Neural Network for X-ray Low-dose CT Image Denoising

    Full text link
    Image denoising techniques are essential to reducing noise levels and enhancing diagnosis reliability in low-dose computed tomography (CT). Machine learning based denoising methods have shown great potential in removing the complex and spatial-variant noises in CT images. However, some residue artifacts would appear in the denoised image due to complexity of noises. A cascaded training network was proposed in this work, where the trained CNN was applied on the training dataset to initiate new trainings and remove artifacts induced by denoising. A cascades of convolutional neural networks (CNN) were built iteratively to achieve better performance with simple CNN structures. Experiments were carried out on 2016 Low-dose CT Grand Challenge datasets to evaluate the method's performance.Comment: 9 pages, 9 figure
    corecore