3,381 research outputs found

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Identification of Material Parameters from Temperature Measurements in Radio Frequency Ablation

    Get PDF
    The mathematical simulation of the method of radio frequency ablation (RFA) offers an opportunity to improve the success of the RFA. The results of the RFA depend highly on the experience of the radiologist. A simulation will offer a prediction of the results which can be used to adapt the setting and enable a complete destruction of the tumor, e.g. by adapting the probe's position. A good simulation needs as much information of the reality as possible. Especially the material properties pose a challenge since they vary from patient to patient, they can not be measured in vivo and they additionally change during the ablation. The aim of this thesis is to develop a mathematical model for the identification of the material parameters from temperature measurements and apply it to appropriate data sets. At first a minimization problem is formulated, where the difference between the measured temperature and the calculated temperature is minimized with respect to the material parameters. The temperature distribution is calculated with a coupled system of partial differential equations. Different approaches are considered which depend on the diverse modeling of the material parameters. The parameters are modeled as constant values as well as temperature dependent, tissue dependent and also spatially distributed. The advantages and disadvantages of the diverse models are illustrated by the numerical results for the identification with artificial temperature distributions as well as real temperature measurements

    Identification of Material Parameters from Temperature Measurements in Radio Frequency Ablation

    Get PDF
    The mathematical simulation of the method of radio frequency ablation (RFA) offers an opportunity to improve the success of the RFA. The results of the RFA depend highly on the experience of the radiologist. A simulation will offer a prediction of the results which can be used to adapt the setting and enable a complete destruction of the tumor, e.g. by adapting the probe's position. A good simulation needs as much information of the reality as possible. Especially the material properties pose a challenge since they vary from patient to patient, they can not be measured in vivo and they additionally change during the ablation. The aim of this thesis is to develop a mathematical model for the identification of the material parameters from temperature measurements and apply it to appropriate data sets. At first a minimization problem is formulated, where the difference between the measured temperature and the calculated temperature is minimized with respect to the material parameters. The temperature distribution is calculated with a coupled system of partial differential equations. Different approaches are considered which depend on the diverse modeling of the material parameters. The parameters are modeled as constant values as well as temperature dependent, tissue dependent and also spatially distributed. The advantages and disadvantages of the diverse models are illustrated by the numerical results for the identification with artificial temperature distributions as well as real temperature measurements

    Stereotactic body radiation therapy for liver tumors

    Get PDF

    Stereotactic body radiation therapy for liver tumors

    Get PDF

    Determination of Thermal Dose Model Parameters Using Magnetic Resonance Imaging

    Get PDF
    Magnetic Resonance Temperature Imaging (MRTI) is a powerful technique for noninvasively monitoring temperature during minimally invasive thermal therapy procedures. When coupled with thermal dose models, MRTI feedback provides the clinician with a real-time estimate of tissue damage by functioning as a surrogate for post-treatment verification imaging. This aids in maximizing the safety and efficacy of treatment by facilitating adaptive control of the damaged volume during therapy. The underlying thermal dose parameters are derived from laboratory experiments that do not necessarily reflect the surrogate imaging endpoints used for treatment verification. Thus, there is interest and opportunity in deriving model parameters from clinical procedures that are tailored to radiologic endpoints. The objective of this work is to develop and investigate the feasibility of a methodology for extracting thermal dose model parameters from MR data acquired during ablation procedures. To this end, two approaches are investigated. One is to optimize model parameters using post-treatment imaging outcomes. Another is to use a multi-parametric pulse sequence designed for simultaneous monitoring of temperature and damage dependent MR parameters. These methodologies were developed and investigated in phantom and feasibility established using retrospective analysis of in vivo thermal therapy treatments. This technique represents an opportunity to exploit experimental data to obtain thermal dose parameters that are highly specific for clinically relevant endpoints

    Multi-objective particle swarm optimization for the structural design of concentric tube continuum robots for medical applications

    Get PDF
    Concentric tube robots belong to the class of continuum robotic systems whose morphology is described by continuous tangent curvature vectors. They are composed of multiple, interacting tubes nested inside one another and are characterized by their inherent flexibility. Concentric tube continuum robots equipped with tools at their distal end have high potential in minimally invasive surgery. Their morphology enables them to reach sites within the body that are inaccessible with commercial tools or that require large incisions. Further, they can be deployed through a tight lumen or follow a nonlinear path. Fundamental research has been the focus during the last years bringing them closer to the operating room. However, there remain challenges that require attention. The structural synthesis of concentric tube continuum robots is one of these challenges, as these types of robots are characterized by their large parameter space. On the one hand, this is advantageous, as they can be deployed in different patients, anatomies, or medical applications. On the other hand, the composition of the tubes and their design is not a straightforward task but one that requires intensive knowledge of anatomy and structural behavior. Prior to the utilization of such robots, the composition of tubes (i.e. the selection of design parameters and application-specific constraints) must be solved to determine a robotic design that is specifically targeted towards an application or patient. Kinematic models that describe the change in morphology and complex motion increase the complexity of this synthesis, as their mathematical description is highly nonlinear. Thus, the state of the art is concerned with the structural design of these types of robots and proposes optimization algorithms to solve for a composition of tubes for a specific patient case or application. However, existing approaches do not consider the overall parameter space, cannot handle the nonlinearity of the model, or multiple objectives that describe most medical applications and tasks. This work aims to solve these fundamental challenges by solving the parameter optimization problem by utilizing a multi-objective optimization algorithm. The main concern of this thesis is the general methodology to solve for patient- and application-specific design of concentric tube continuum robots and presents key parameters, objectives, and constraints. The proposed optimization method is based on evolutionary concepts that can handle multiple objectives, where the set of parameters is represented by a decision vector that can be of variable dimension in multidimensional space. Global optimization algorithms specifically target the constrained search space of concentric tube continuum robots and nonlinear optimization enables to handle the highly nonlinear elasticity modeling. The proposed methodology is then evaluated based on three examples that include cooperative task deployment of two robotic arms, structural stiffness optimization under the consideration of workspace constraints and external forces, and laser-induced thermal therapy in the brain using a concentric tube continuum robot. In summary, the main contributions are 1) the development of an optimization methodology that describes the key parameters, objectives, and constraints of the parameter optimization problem of concentric tube continuum robots, 2) the selection of an appropriate optimization algorithm that can handle the multidimensional search space and diversity of the optimization problem with multiple objectives, and 3) the evaluation of the proposed optimization methodology and structural synthesis based on three real applications

    Robotic System Development for Precision MRI-Guided Needle-Based Interventions

    Get PDF
    This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed

    Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments

    Full text link
    [EN] Background: The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g., gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. Methods: The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group). Results: The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone. Conclusions: Both the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity.This work was supported by the National Council of Science and Technology (CONACYT, Mexico) through a scholarship grant to Dora Luz Castro-Lopez, CVU Registration No. 446604; and by the Spanish Ministerio de Ciencia, Innovacion y Universidades under the "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21"Castro-LĂłpez, DL.; Berjano, E.; Romero-MĂ©ndez, R. (2021). Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments. BioMedical Engineering OnLine. 20:1-20. https://doi.org/10.1186/s12938-020-00842-8S12020Zhu F, Rhim H. Thermal ablation for hepatocellular carcinoma: what’s new in 2019. Chin Clin Oncol. 2019;8(6):58. https://doi.org/10.21037/cco.2019.11.03.Haemmerich D. Biophysics of radiofrequency ablation. Crit Rev Biomed Eng. 2010;38(1):53–63. https://doi.org/10.1615/critrevbiomedeng.v38.i1.50 (PMID: 21175403).Haines DE. Letter by Haines regarding article, “Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.” Circ Arrhythm Electrophysiol. 2011;4(5):e67. https://doi.org/10.1161/CIRCEP.111.965459 (author reply e68).Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, Chen MH, Choi BI, de BaĂšre T, Dodd GD 3rd, Dupuy DE, Gervais DA, Gianfelice D, Gillams AR, Lee FT Jr, Leen E, Lencioni R, Littrup PJ, Livraghi T, Lu DS, McGahan JP, Meloni MF, Nikolic B, Pereira PL, Liang P, Rhim H, Rose SC, Salem R, Sofocleous CT, Solomon SB, Soulen MC, Tanaka M, Vogl TJ, Wood BJ, Goldberg SN, International Working Group on Image-guided Tumor Ablation, Technology Assessment Committee of the Society of Interventional Radiology, Standard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology. 2014;273(1):241–60. https://doi.org/10.1148/radiol.14132958.Trujillo M, Alba J, Berjano E. Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. Int J Hyperthermia. 2012;28(1):62–8.Jiang XY, Zhang TQ, Li G, Gu YK, Gao F, Yao W, Zhang YY, Huang JH. Increasing radiofrequency ablation volumes with the use of internally cooled electrodes and injected hydrochloric acid in ex vivo bovine livers. Int J Hyperthermia. 2018;35(1):37–43.Bruners P, MĂŒller H, GĂŒnther RW, Schmitz-Rode T, Mahnken AH. Fluid-modulated bipolar radiofrequency ablation: an ex-vivo evaluation study. Acta Radiol. 2008;49(3):258–66.Ishikawa T, Kubota T, Horigome R, Kimura N, Honda H, Iwanaga A, Seki K, Honma T, Yoshida T. Radiofrequency ablation during continuous saline infusion can extend ablation margins. World J Gastroenterol. 2013;19(8):1278–82. https://doi.org/10.3748/wjg.v19.i8.1278.Bennett D. NaCl doping and the conductivity of agar phantoms. Mater Sci Eng, C. 2011;31:494–8.da Fonseca RD, Monteiro MS, Marques MP, Motta BC, Guimaraes GDA, do Santos PR, Jacobi RP, Rosa SSRF. Roll-off displacement in ex vivo experiments of RF ablation with refrigerated saline solution and refrigerated deionized water. IEEE Trans Biomed Eng. 2019;66(5):1390–401. https://doi.org/10.1109/TBME.2018.2873141.Trujillo M, Berjano E. Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int J Hyperthermia. 2013;29(6):590–7.Qadri AM, Chia NJY, Ooi EH. Effects of saline volume on lesion formation during saline-infused radiofrequency ablation. Appl Math Model. 2017;43:360–71.Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010;62(3):339–45.Glazer ES, Curley SA. Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Ther Deliv. 2011;2(10):1325–30. https://doi.org/10.4155/tde.11.102.Merkle EM, Goldberg SN, Boll DT, Shankaranarayanan A, Boaz T, Jacobs GH, Wendt M, Lewin JS. Effects of superparamagnetic iron oxide on radio-frequency-induced temperature distribution: in vitro measurements in polyacrylamide phantoms and in vivo results in a rabbit liver model. Radiology. 1999;212(2):459–66. https://doi.org/10.1148/radiology.212.2.r99au44459.Pedro RN, Thekke-Adiyat T, Goel R, Shenoi M, Slaton J, Schmechel S, Bischof J, Anderson JK. Use of tumor necrosis factor-alpha-coated gold nanoparticles to enhance radiofrequency ablation in a translational model of renal tumors. Urology. 2010;76(2):494–8. https://doi.org/10.1016/j.urology.2010.01.085.Wu Q, Zhang H, Chen M, Zhang Y, Huang J, Xu Z, Wang W. Preparation of carbon-coated iron nanofluid and its application in radiofrequency ablation. J Biomed Mater Res B Appl Biomater. 2015;103(4):908–14. https://doi.org/10.1002/jbm.b.33275.Jelbuldina M, Korganbayev S, Korobeinyk AV, Inglezakis VJ, Tosi D. Temperature profiling of ex-vivo organs during ferromagnetic nanoparticles-enhanced radiofrequency ablation by Fiber Bragg Grating Arrays. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:1–4. https://doi.org/10.1109/EMBC.2018.8513227.Khalafalla MAH, Mesli A, Widattallah HM, Sellai A, Al-harthi S, Al-Lawati HAJ, Suliman FO. Size-dependent conductivity dispersion of gold nanoparticle colloids in a microchip: contactless measurements. J Nanoparticle Res. 2014;16:2546.Ewertowska E, Quesada R, Radosevic A, Andaluz A, Moll X, Arnas FG, Berjano E, BurdĂ­o F, Trujillo M. A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode. Int J Hyperthermia. 2019;35(1):194–204.Raoof M, Corr SJ, Zhu C, Cisneros BT, Kaluarachchi WD, Phounsavath S, Wilson LJ, Curley SA. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomedicine. 2014;10(6):1121–30.Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys. 2002;23:571–80.Yull Park J, Young Park C, Min Lee J. Estimation of saline-mixed tissue conductivity and ablation lesion size. Comput Biol Med. 2013;43(5):504–12.Abdelhalim MAK, Mady MM, Ghannam MM. Dielectric constant, electrical conductivity and relaxation time measurements of different gold nanoparticle sizes. Int J Phys Sci. 2011;6(23):5487–91.Zorbas G, Samaras T. Parametric study of radiofrequency ablation in the clinical practice with the use of two-compartment numerical models. Electromagn Biol Med. 2013;32(2):236–43.Zhang B, Moser MA, Zhang EM, Luo Y, Zhang H, Zhang W. Study of the relationship between the target tissue necrosis volume and the target tissue size in liver tumours using two-compartment finite element RFA modelling. Int J Hyperthermia. 2014;30(8):593–602.Francica G. Needle track seeding after radiofrequency ablation for hepatocellular carcinoma: prevalence, impact, and management challenge. J Hepatocell Carcinoma. 2017;20(4):23–7.Ji Q, Xu Z, Liu G, Lin M, Kuang M, Lu M. Preinjected fluids do not benefit microwave ablation as those in radiofrequency ablation. Acad Radiol. 2011;18(9):1151–8.Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol. 1999;10(7):907–16.Solazzo SA, Ahmed M, Liu Z, Hines-Peralta AU, Goldberg SN. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology. 2007;242(3):743–50.Goldberg SN, Ahmed M, Gazelle GS, Kruskal JB, Huertas JC, Halpern EF, Oliver BS, Lenkinski RE. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation-phantom and porcine liver study. Radiology. 2001;219(1):157–65.Trujillo M, Bon J, Berjano E. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity. Int J Hyperthermia. 2017;33(6):624–34.Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28(4):476–80.Takata AN, Zaneveld L, Richter W. Laser-induced thermal damage of skin (Rep. SAM-TR-77–38). USAF School Aerospace Medicine, Brooks Air Force Base, Texas. 1977: 22−3.BurdĂ­o F, Berjano E, Millan O, Grande L, Poves I, Silva C, de la Fuente MD, Mojal S. CT mapping of saline distribution after infusion of saline into the liver in an ex vivo animal model. How much tissue is actually infused in an image-guided procedure? Phys Med. 2013;29(2):188–95.Abraham JP, Sparrow EM. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int J Heat Mass Transfer. 2007;50:2537–44.PĂ€tz T, Kröger T, Preusser T, Simulation of radiofrequency ablation including water evaporation, IFMBE Proceedings, 25/IV:1287–90, 2009.https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html (accessed March 15, 2020).Carson JK. Review of effective thermal conductivity models for foods. Int J Refrigeration. 2006;29(6):958–67.Cruz RCD, Reinshagen J, Oberacker R, SegadĂŁes AM. Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci. 2005;286:579–88.Trujillo M, Bon J, Rivera MJ, Burdio F, Berjano E. Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. Int J Hyperthermia. 2016;32:931–9
    • 

    corecore