641 research outputs found

    Identifying combinations of tetrahedra into hexahedra: a vertex based strategy

    Full text link
    Indirect hex-dominant meshing methods rely on the detection of adjacent tetrahedra an algorithm that performs this identification and builds the set of all possible combinations of tetrahedral elements of an input mesh T into hexahedra, prisms, or pyramids. All identified cells are valid for engineering analysis. First, all combinations of eight/six/five vertices whose connectivity in T matches the connectivity of a hexahedron/prism/pyramid are computed. The subset of tetrahedra of T triangulating each potential cell is then determined. Quality checks allow to early discard poor quality cells and to dramatically improve the efficiency of the method. Each potential hexahedron/prism/pyramid is computed only once. Around 3 millions potential hexahedra are computed in 10 seconds on a laptop. We finally demonstrate that the set of potential hexes built by our algorithm is significantly larger than those built using predefined patterns of subdivision of a hexahedron in tetrahedral elements.Comment: Preprint submitted to CAD (26th IMR special issue

    H-Morph: an indirect approach to advancing front hex meshing

    Get PDF

    Implicit High-Order Flux Reconstruction Solver for High-Speed Compressible Flows

    Full text link
    The present paper addresses the development and implementation of the first high-order Flux Reconstruction (FR) solver for high-speed flows within the open-source COOLFluiD (Computational Object-Oriented Libraries for Fluid Dynamics) platform. The resulting solver is fully implicit and able to simulate compressible flow problems governed by either the Euler or the Navier-Stokes equations in two and three dimensions. Furthermore, it can run in parallel on multiple CPU-cores and is designed to handle unstructured grids consisting of both straight and curved edged quadrilateral or hexahedral elements. While most of the implementation relies on state-of-the-art FR algorithms, an improved and more case-independent shock capturing scheme has been developed in order to tackle the first viscous hypersonic simulations using the FR method. Extensive verification of the FR solver has been performed through the use of reproducible benchmark test cases with flow speeds ranging from subsonic to hypersonic, up to Mach 17.6. The obtained results have been favorably compared to those available in literature. Furthermore, so-called super-accuracy is retrieved for certain cases when solving the Euler equations. The strengths of the FR solver in terms of computational accuracy per degree of freedom are also illustrated. Finally, the influence of the characterizing parameters of the FR method as well as the the influence of the novel shock capturing scheme on the accuracy of the developed solver is discussed
    corecore