8,978 research outputs found

    Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

    Full text link
    In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant of Jensen's inequality that extends the one for stochastic program. To solve this challenging problem, we present a variant of Benders decomposition method in bilinear form, which actually provides an easy-to-use algorithm framework for further improvements, along with a few enhancement strategies based on structural properties or Jensen's inequality. Computational study shows that the presented Benders decomposition method, jointly with appropriate enhancement techniques, outperforms a commercial solver by an order of magnitude on solving chance constrained program or detecting its infeasibility

    Empirical Bounds on Linear Regions of Deep Rectifier Networks

    Full text link
    We can compare the expressiveness of neural networks that use rectified linear units (ReLUs) by the number of linear regions, which reflect the number of pieces of the piecewise linear functions modeled by such networks. However, enumerating these regions is prohibitive and the known analytical bounds are identical for networks with same dimensions. In this work, we approximate the number of linear regions through empirical bounds based on features of the trained network and probabilistic inference. Our first contribution is a method to sample the activation patterns defined by ReLUs using universal hash functions. This method is based on a Mixed-Integer Linear Programming (MILP) formulation of the network and an algorithm for probabilistic lower bounds of MILP solution sets that we call MIPBound, which is considerably faster than exact counting and reaches values in similar orders of magnitude. Our second contribution is a tighter activation-based bound for the maximum number of linear regions, which is particularly stronger in networks with narrow layers. Combined, these bounds yield a fast proxy for the number of linear regions of a deep neural network.Comment: AAAI 202

    Minimizing value-at-risk in the single-machine total weighted tardiness problem

    Get PDF
    The vast majority of the machine scheduling literature focuses on deterministic problems, in which all data is known with certainty a priori. This may be a reasonable assumption when the variability in the problem parameters is low. However, as variability in the parameters increases incorporating this uncertainty explicitly into a scheduling model is essential to mitigate the resulting adverse effects. In this paper, we consider the celebrated single-machine total weighted tardiness (TWT) problem in the presence of uncertain problem parameters. We impose a probabilistic constraint on the random TWT and introduce a risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) measure on the random TWT at a specified confidence level. Furthermore, we develop a lower bound on the optimal VaR that may also benefit alternate solution approaches in the future. In this study, we implement a tabu-search heuristic to obtain reasonably good feasible solutions and present results to demonstrate the effect of the risk parameter and the value of the proposed model with respect to a corresponding risk-neutral approach
    corecore