312 research outputs found

    An RF-Isolated Real-Time Multipath Testbed for Performance Analysis of WLANs

    Get PDF
    Real-time performance evaluation of wireless local area networks (WLANs) is an extremely challenging topic. The major drawback of real-time performance analysis in actual network installations is a lack of repeatability due to uncontrollable interference and propagation complexities. These are caused by unpredictable variations in the interference scenarios and statistical behavior of the wireless propagation channel. This underscores the need for a Radio Frequency (RF) test platform that provides isolation from interfering sources while simulating a real-time wireless channel, thereby creating a realistic and controllable radio propagation test environment. Such an RF-isolated testbed is necessary to enable an empirical yet repeatable evaluation of the effects of the wireless channel on WLAN performance. In this thesis, a testbed is developed that enables real-time laboratory performance evaluation of WLANs. This testbed utilizes an RF-isolated test system, Azimuthâ„¢ Systems 801W, for isolation from external interfering sources such as cordless phones and microwave ovens and a real-time multipath channel simulator, Elektrobit PROPSimâ„¢ C8, for wireless channel emulation. A software protocol analyzer, WildPackets Airopeek NX, is used to capture data packets in the testbed from which statistical data characterizing performance such as data rate and Received Signal Strength (RSS) are collected. The relationship between the wireless channel and WLAN performance, under controlled propagation and interference conditions, is analyzed using this RF-isolated multipath testbed. Average throughput and instantaneous throughput variation of IEEE 802.11b and 802.11g WLANs operating in four different channels - a constant channel and IEEE 802.11 Task Group n (TGn) Channel Models A, B, and C - are examined. Practical models describing the average throughput as a function of the average received power and throughput variation as a function of the average throughput under different propagation conditions are presented. Comprehensive throughput models that incorporate throughput variation are proposed for the four channels using Weibull and Gaussian probability distributions. These models provide a means for realistic simulation of throughput for a specific channel at an average received power. Also proposed is a metric to describe the normalized throughput capacity of WLANs for comparative performance evaluation

    Connecting Disjoint Nodes Through a UAV-Based Wireless Network for Bridging Communication Using IEEE 802.11 Protocols

    Get PDF
    Cooperative aerial wireless networks composed of small unmanned aerial vehicles(UAVs) are easy and fast to deploy and provide on the fly communication facilities in situations where part of the communication infrastructure is destroyed and the survivors need to be rescued on emergency basis. In this article, we worked on such a cooperative aerial UAV-based wireless network to connect the two participating stations. The proposed method provides on the fly communication facilities to connect the two ground stations through a wireless access point (AP) mounted on a UAV using the IEEE 802.11a/b/g/n. We conducted our experiments both indoor and outdoor to investigate the performance of IEEE 802.11 protocol stack including a/b/g/n. We envisioned two different cases: line of sight (LoS) and non-line of sight (NLoS). In LoS, we consider three different scenarios with respect to UAV altitude and performed the experiments at different altitudes to measure the performance and applicability of the proposed system in catastrophic situations and healthcare applications. Similarly, for NLoS, we performed a single set of experiments in an indoor environment. Based on our observations from the experiments, 802.11n at 2.4 GHz outperforms the other IEEE protocols in terms of data rate followed by 802.11n at 5 GHz band. We also concluded that 802.11n is the more suitable protocol that can be practiced in disastrous situations such as rescue operations and healthcare applications

    Interference Alignment (IA) and Coordinated Multi-Point (CoMP) with IEEE802.11ac feedback compression: testbed results

    Full text link
    We have implemented interference alignment (IA) and joint transmission coordinated multipoint (CoMP) on a wireless testbed using the feedback compression scheme of the new 802.11ac standard. The performance as a function of the frequency domain granularity is assessed. Realistic throughput gains are obtained by probing each spatial modulation stream with ten different coding and modulation schemes. The gain of IA and CoMP over TDMA MIMO is found to be 26% and 71%, respectively under stationary conditions. In our dense indoor office deployment, the frequency domain granularity of the feedback can be reduced down to every 8th subcarrier (2.5MHz), without sacrificing performance.Comment: To appear in ICASSP 201

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Experimental Evaluation of Wireless Mesh Networks: A Case Study and Comparison

    Get PDF
    Price of WiFi devices has decreased dramatically in recent years, while new standards, as 802.11n, have multiplied its performance. This has fostered the deployment of Wireless Mesh networks (WMN), putting into practice concepts evolved from more than a decade of research in Ad Hoc networks. Nevertheless, evolution of WMN it is in its infancy, as shows the growing and diverse number of scenarios where WMN are being deployed. In these paper we analyze a particular case study of a Wireless Community Mesh Network, and we compare it with a selected experimental WMN studies found in the literature

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    Attention to Wi-Fi Diversity: Resource Management in WLANs with Heterogeneous APs

    Get PDF
    Many home networks integrate a small number (typically 2-4) of Wi-Fi Access Points (APs), with heterogeneous characteristics: different 802.11 variants, capabilities and security schemes. This paper proposes the consideration of these specific characteristics in order to improve the management of network resources. Three use cases are presented in order to showcase the potential benefits. By the use of a user-space AP, which works in coordination with a controller, the network is able to assign each connected station to the AP that best fits with its characteristics. The system also manages security, avoiding the need of adding specific elements for authentication, encryption or decryption. Extensions are proposed to an existing protocol that defines the communication between the AP and the controller, in order to communicate and store the specific characteristics of each AP and end device. This includes new association and handoff schemes that do not introduce any additional delay. The system has been implemented in a real environment, and a battery of tests has been run using three hardware platforms of different characteristics. The results show that handoffs between bands are possible, and estimate the processing delays, the Round-Trip Time and the handoff delay, which is small enough in order not to produce any significant disruption to the user (10-50 ms). Finally, the scenarios of interest have been replicated in a simulation environment, showing that significant benefits can be achieved if the specific characteristics of each AP and station are considered
    corecore