451 research outputs found

    Mixed Voltage Angle and Frequency Droop Control for Transient Stability of Interconnected Microgrids with Loss of PMU Measurements

    Full text link
    We consider the problem of guaranteeing transient stability of a network of interconnected angle droop controlled microgrids, where voltage phase angle measurements from phasor measurement units (PMUs) may be lost, leading to poor performance and instability. In this paper, we propose a novel mixed voltage angle and frequency droop control (MAFD) framework to improve the reliability of such angle droop controlled microgrid interconnections. In this framework, when the phase angle measurement is lost at a microgrid, conventional frequency droop control is temporarily used for primary control in place of angle droop control. We model the network of interconnected microgrids with the MAFD architecture as a nonlinear switched system. We then propose a dissipativity-based distributed secondary control design to guarantee transient stability of this network under arbitrary switching between angle droop and frequency droop controllers. We demonstrate the performance of this control framework by simulation on a test 123-feeder distribution network.Comment: American Control Conference (ACC), 202

    Stability of microgrids and weak grids with high penetration of variable renewable energy

    Get PDF
    Autonomous microgrids and weak grids with high penetrations of variable renewable energy (VRE) generation tend to share several common characteristics: i) low synchronous inertia, ii) sensitivity to active power imbalances, and iii) low system strength (as defined by the nodal short circuit ratio). As a result of these characteristics, there is a greater risk of system instability relative to larger grids, especially as the share of VRE is increased. This thesis focuses on the development of techniques and strategies to assess and improve the stability of microgrids and weak grids. In the first part of this thesis, the small-signal stability of inertia-less converter dominated microgrids is analysed, wherein a load flow based method for small-signal model initialisation is proposed and used to examine the effects of topology and network parameters on the stability of the microgrid. The use of a back-to-back dc link to interconnect neighbouring microgrids and provide dynamic frequency support is then proposed to improve frequency stability by helping to alleviate active power imbalances. In the third part of this thesis, a new technique to determine the optimal sizing of smoothing batteries in microgrids is proposed. The technique is based on the temporal variability of the solar irradiance at the specific site location in order to maximise PV penetration without causing grid instability. A technical framework for integrating solar PV plants into weak grids is then proposed, addressing the weaknesses in conventional Grid Codes that fail to consider the unique characteristics of weak grids. Finally, a new technique is proposed for estimating system load relief factors that are used in aggregate single frequency stability models

    Inter-Microgrid Operation: Power Sharing, Frequency Restoration, Seamless Reconnection and Stability Analysis

    Get PDF
    Electrification in the rural areas sometimes become very challenging due to area accessibility and economic concern. Standalone Microgrids (MGs) play a very crucial role in these kinds of a rural area where a large power grid is not available. The intermittent nature of distributed energy sources and the load uncertainties can create a power mismatch and can lead to frequency and voltage drop in rural isolated community MG. In order to avoid this, various intelligent load shedding techniques, installation of micro storage systems and coupling of neighbouring MGs can be adopted. Among these, the coupling of neighbouring MGs is the most feasible in the rural area where large grid power is not available. The interconnection of neighbouring MGs has raised concerns about the safety of operation, protection of critical infrastructure, the efficiency of power-sharing and most importantly, stable mode of operation. Many advanced control techniques have been proposed to enhance the load sharing and stability of the microgrid. Droop control is the most commonly used control technique for parallel operation of converters in order to share the load among the MGs. But most of them are in the presence of large grid power, where system voltage and frequency are controlled by the stiff grid. In a rural area, where grid power is not available, the frequency and voltage control become a fundamental issue to be addressed. Moreover, for accurate load sharing a high value of droop gain should be chosen as the R/X ratio of the rural network is very high, which makes the system unstable. Therefore, the choice of droop gains is often a trade-off between power-sharing and stability. In the context, the main focus of this PhD thesis is the fundamental investigations into control techniques of inverter-based standalone neighbouring microgrids for available power sharing. It aims to develop new and improved control techniques to enhance performance and power-sharing reliability of remote standalone Microgrids. In this thesis, a power management-based droop control is proposed for accurate power sharing according to the power availability in a particular MG. Inverters can have different power setpoints during the grid-connected mode, but in the standalone mode, they all need their power setpoints to be adjusted according to their power ratings. On the basis of this, a power management-based droop control strategy is developed to achieve the power-sharing among the neighbouring microgrids. The proposed method helps the MG inverters to share the power according to its ratings and availability, which does not restrict the inverters for equal power-sharing. The paralleled inverters in coupled MGs need to work in both interconnected mode and standalone mode and should be able to transfer between modes seamlessly. An enhanced droop control is proposed to maintain the frequency and voltage of the MGs to their nominal value, which also helps the neighbouring MGs for seamless (de)coupling. This thesis also presents a mathematical model of the interconnected neighbouring microgrid for stability and robustness analysis. Finally, a laboratory prototype model of two MGs is developed to test the effectiveness of the proposed control strategies

    Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids

    Get PDF
    corecore