849 research outputs found

    Mixed Similarity Diffusion for Recommendation on Bipartite Networks

    Full text link
    © 2013 IEEE. In recommender systems, collaborative filtering technology is an important method to evaluate user preference through exploiting user feedback data, and has been widely used in industrial areas. Diffusion-based recommendation algorithms inspired by diffusion phenomenon in physical dynamics are a crucial branch of collaborative filtering technology, which use a bipartite network to represent collection behaviors between users and items. However, diffusion-based recommendation algorithms calculate the similarity between users and make recommendations by only considering implicit feedback but neglecting the benefits from explicit feedback data, which would be a significant feature in recommender systems. This paper proposes a mixed similarity diffusion model to integrate both explicit feedback and implicit feedback. First, cosine similarity between users is calculated by explicit feedback, and we integrate it with resource-allocation index calculated by implicit feedback. We further improve the performance of the mixed similarity diffusion model by considering the degrees of users and items at the same time in diffusion processes. Some sophisticated experiments are designed to evaluate our proposed method on three real-world data sets. Experimental results indicate that recommendations given by the mixed similarity diffusion perform better on both the accuracy and the diversity than that of most state-of-the-art algorithms

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    A Network Resource Allocation Recommendation Method with An Improved Similarity Measure

    Full text link
    Recommender systems have been acknowledged as efficacious tools for managing information overload. Nevertheless, conventional algorithms adopted in such systems primarily emphasize precise recommendations and, consequently, overlook other vital aspects like the coverage, diversity, and novelty of items. This approach results in less exposure for long-tail items. In this paper, to personalize the recommendations and allocate recommendation resources more purposively, a method named PIM+RA is proposed. This method utilizes a bipartite network that incorporates self-connecting edges and weights. Furthermore, an improved Pearson correlation coefficient is employed for better redistribution. The evaluation of PIM+RA demonstrates a significant enhancement not only in accuracy but also in coverage, diversity, and novelty of the recommendation. It leads to a better balance in recommendation frequency by providing effective exposure to long-tail items, while allowing customized parameters to adjust the recommendation list bias

    Network-based models for social recommender systems

    Get PDF
    With the overwhelming online products available in recent years, there is an increasing need to filter and deliver relevant personalized advice for users. Recommender systems solve this problem by modeling and predicting individual preferences for a great variety of items such as movies, books or research articles. In this chapter, we explore rigorous network-based models that outperform leading approaches for recommendation. The network models we consider are based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. The accurate prediction of individual user preferences over items can be accomplished by different methodologies, such as Monte Carlo sampling or Expectation-Maximization methods, the latter resulting in a scalable algorithm which is suitable for large datasets

    Network-Based Models for Social Recommender Systems

    Get PDF
    With the overwhelming online products available in recent years, there is an increasing need to filter and deliver relevant personalized advice for users. Recommender systems solve this problem by modelling and predicting individual preferences for a great variety of items such as movies, books or research articles. In this chapter, we explore rigorous network-based models that outperform leading approaches for recommendation. The network models we consider are based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. The accurate prediction of individual user preferences over items can be accomplished by different methodologies, such as Monte Carlo sampling or Expectation-Maximization methods, the latter resulting in a scalable algorithm which is suitable for large datasets

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Towards Graph-Aware Diffusion Modeling for Collaborative Filtering

    Full text link
    Recovering masked feedback with neural models is a popular paradigm in recommender systems. Seeing the success of diffusion models in solving ill-posed inverse problems, we introduce a conditional diffusion framework for collaborative filtering that iteratively reconstructs a user's hidden preferences guided by its historical interactions. To better align with the intrinsic characteristics of implicit feedback data, we implement forward diffusion by applying synthetic smoothing filters to interaction signals on an item-item graph. The resulting reverse diffusion can be interpreted as a personalized process that gradually refines preference scores. Through graph Fourier transform, we equivalently characterize this model as an anisotropic Gaussian diffusion in the graph spectral domain, establishing both forward and reverse formulations. Our model outperforms state-of-the-art methods by a large margin on one dataset and yields competitive results on the others.Comment: 13 pages, 6 figure

    Neural Multi-network Diffusion towards Social Recommendation

    Full text link
    Graph Neural Networks (GNNs) have been widely applied on a variety of real-world applications, such as social recommendation. However, existing GNN-based models on social recommendation suffer from serious problems of generalization and oversmoothness, because of the underexplored negative sampling method and the direct implanting of the off-the-shelf GNN models. In this paper, we propose a succinct multi-network GNN-based neural model (NeMo) for social recommendation. Compared with the existing methods, the proposed model explores a generative negative sampling strategy, and leverages both the positive and negative user-item interactions for users' interest propagation. The experiments show that NeMo outperforms the state-of-the-art baselines on various real-world benchmark datasets (e.g., by up to 38.8% in terms of NDCG@15)
    • …
    corecore