1,548 research outputs found

    Collaborative geographic visualization

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil GestĂŁo e Sistemas AmbientaisThe present document is a revision of essential references to take into account when developing ubiquitous Geographical Information Systems (GIS) with collaborative visualization purposes. Its chapters focus, respectively, on general principles of GIS, its multimedia components and ubiquitous practices; geo-referenced information visualization and its graphical components of virtual and augmented reality; collaborative environments, its technological requirements, architectural specificities, and models for collective information management; and some final considerations about the future and challenges of collaborative visualization of GIS in ubiquitous environment

    Computer-Supported Collaborative Production

    Get PDF
    This paper proposes the concept of collaborative production as a focus of concern within the general area of collaborative work. We position the concept with respect to McGrath's framework for small group dynamics and the more familiar collaboration processes of awareness, coordination, and communication (McGrath 1991). After reviewing research issues and computer-based support for these interacting aspects of collaboration, we turn to a discussion of implications for how to design improved support for collaborative production. We illustrate both the challenges of collaborative production and our design implications with a collaborative map-updating scenario drawn from the work domain of geographical information systems

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Enabling Collaborative Visual Analysis across Heterogeneous Devices

    Get PDF
    We are surrounded by novel device technologies emerging at an unprecedented pace. These devices are heterogeneous in nature: in large and small sizes with many input and sensing mechanisms. When many such devices are used by multiple users with a shared goal, they form a heterogeneous device ecosystem. A device ecosystem has great potential in data science to act as a natural medium for multiple analysts to make sense of data using visualization. It is essential as today's big data problems require more than a single mind or a single machine to solve them. Towards this vision, I introduce the concept of collaborative, cross-device visual analytics (C2-VA) and outline a reference model to develop user interfaces for C2-VA. This dissertation covers interaction models, coordination techniques, and software platforms to enable full stack support for C2-VA. Firstly, we connected devices to form an ecosystem using software primitives introduced in the early frameworks from this dissertation. To work in a device ecosystem, we designed multi-user interaction for visual analysis in front of large displays by finding a balance between proxemics and mid-air gestures. Extending these techniques, we considered the roles of different devices–large and small–to present a conceptual framework for utilizing multiple devices for visual analytics. When applying this framework, findings from a user study showcase flexibility in the analytic workflow and potential for generation of complex insights in device ecosystems. Beyond this, we supported coordination between multiple users in a device ecosystem by depicting the presence, attention, and data coverage of each analyst within a group. Building on these parts of the C2-VA stack, the culmination of this dissertation is a platform called Vistrates. This platform introduces a component model for modular creation of user interfaces that work across multiple devices and users. A component is an analytical primitive–a data processing method, a visualization, or an interaction technique–that is reusable, composable, and extensible. Together, components can support a complex analytical activity. On top of the component model, the support for collaboration and device ecosystems comes for granted in Vistrates. Overall, this enables the exploration of new research ideas within C2-VA

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    interActive Environments: Designing interactions to support active behaviors in urban public space

    Get PDF

    interActive Environments: Designing interactions to support active behaviors in urban public space

    Get PDF

    DOCUMENTING STUDENT CONNECTIVITY AND USE OF DIGITAL ANNOTATION DEVICES IN VIRGINIA COMMONWEALTH UNIVERSITY CONNECTED COURSES: AN ASSESSMENT TOOLKIT FOR DIGITAL PEDAGOGIES IN HIGHER EDUCATION

    Get PDF
    Virginia Commonwealth University (VCU) is implementing a large scale exploration of digital pedagogies, including connected learning and open education, in an effort to promote digital fluency and integrative thinking among students. The purpose of this study was to develop a classroom assessment toolkit for faculty who wish to document student connectivity in course-related blogging and microblogging (“tweeting”) activities. Student use of digital annotation devices, including hyperlinks, embedded images, mentions, and hashtags, were studied in four university courses as potential indicators of student connectivity, defined as the ability to connect current thoughts and experience with other concepts and people across space and time. One thousand one hundred and eighty six (1186) hyperlinks and embedded images, 2708 mentions, and 135 hashtags were collected from 498 learner blog posts and 5343 tweets through mostly automated, digital workflows and analyzed through a combination of statistical, content, and network analysis. General criteria for “connected course” design, a model for connectivity as a form of learning, connectivity-based learning goals, and integrated, potentially scalable assessment practices are discussed. Content analysis led to the development of classification systems for the types, sources, and communicative impact of hyperlinked and embedded materials in blogging and tweeting contexts. Network analysis was adapted to visualize, document, and describe course-related social interactions and student use of web-based information sources. Real student data are used to describe annotation-focused assessment criteria, analytic assessment dashboards, rubrics, and approaches to real-time graphic visualization of student performance

    Cognitive Foundations for Visual Analytics

    Full text link
    • 

    corecore