2,999 research outputs found

    Kernel discriminant analysis and clustering with parsimonious Gaussian process models

    Full text link
    This work presents a family of parsimonious Gaussian process models which allow to build, from a finite sample, a model-based classifier in an infinite dimensional space. The proposed parsimonious models are obtained by constraining the eigen-decomposition of the Gaussian processes modeling each class. This allows in particular to use non-linear mapping functions which project the observations into infinite dimensional spaces. It is also demonstrated that the building of the classifier can be directly done from the observation space through a kernel function. The proposed classification method is thus able to classify data of various types such as categorical data, functional data or networks. Furthermore, it is possible to classify mixed data by combining different kernels. The methodology is as well extended to the unsupervised classification case. Experimental results on various data sets demonstrate the effectiveness of the proposed method

    Robust Recovery of Subspace Structures by Low-Rank Representation

    Full text link
    In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc

    Underdetermined blind source separation based on Fuzzy C-Means and Semi-Nonnegative Matrix Factorization

    Get PDF
    Conventional blind source separation is based on over-determined with more sensors than sources but the underdetermined is a challenging case and more convenient to actual situation. Non-negative Matrix Factorization (NMF) has been widely applied to Blind Source Separation (BSS) problems. However, the separation results are sensitive to the initialization of parameters of NMF. Avoiding the subjectivity of choosing parameters, we used the Fuzzy C-Means (FCM) clustering technique to estimate the mixing matrix and to reduce the requirement for sparsity. Also, decreasing the constraints is regarded in this paper by using Semi-NMF. In this paper we propose a new two-step algorithm in order to solve the underdetermined blind source separation. We show how to combine the FCM clustering technique with the gradient-based NMF with the multi-layer technique. The simulation results show that our proposed algorithm can separate the source signals with high signal-to-noise ratio and quite low cost time compared with some algorithms
    corecore