112,095 research outputs found

    Mixed membership models for rank data: Investigating structure in Irish voting data

    Get PDF
    A mixed membership model is an individual level mixture model where individuals have partial membership of the profiles (or groups) that characterize a population. A mixed membership model for rank data is outlined and illustrated through the analysis of voting in the 2002 Irish general election. This particular election uses a voting system called proportional representation using a single transferable vote (PR-STV) where voters rank some or all of the candidates in order of preference. The data set considered consists of all votes in a constituency from the 2002 Irish general election. Interest lies in highlighting distinct voting profiles within the electorate and studying how voters affiliate themselves to these voting profiles. The mixed membership model for rank data is fitted to the voting data and is shown to give a concise and highly interpretable explanation of voting patterns in this election

    Statistical Inference for Structured High-dimensional Models

    Get PDF
    High-dimensional statistical inference is a newly emerged direction of statistical science in the 21 century. Its importance is due to the increasing dimensionality and complexity of models needed to process and understand the modern real world data. The main idea making possible meaningful inference about such models is to assume suitable lower dimensional underlying structure or low-dimensional approximations, for which the error can be reasonably controlled. Several types of such structures have been recently introduced including sparse high-dimensional regression, sparse and/or low rank matrix models, matrix completion models, dictionary learning, network models (stochastic block model, mixed membership models) and more. The workshop focused on recent developments in structured sequence and regression models, matrix and tensor estimation, robustness, statistical learning in complex settings, network data, and topic models

    Hierarchical relational models for document networks

    Full text link
    We develop the relational topic model (RTM), a hierarchical model of both network structure and node attributes. We focus on document networks, where the attributes of each document are its words, that is, discrete observations taken from a fixed vocabulary. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and estimation algorithms based on variational methods that take advantage of sparsity and scale with the number of links. We evaluate the predictive performance of the RTM for large networks of scientific abstracts, web documents, and geographically tagged news.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS309 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Consistent Estimation of Mixed Memberships with Successive Projections

    Full text link
    This paper considers the parameter estimation problem in Mixed Membership Stochastic Block Model (MMSB), which is a quite general instance of random graph model allowing for overlapping community structure. We present the new algorithm successive projection overlapping clustering (SPOC) which combines the ideas of spectral clustering and geometric approach for separable non-negative matrix factorization. The proposed algorithm is provably consistent under MMSB with general conditions on the parameters of the model. SPOC is also shown to perform well experimentally in comparison to other algorithms

    Consistency of adjacency spectral embedding for the mixed membership stochastic blockmodel

    Full text link
    The mixed membership stochastic blockmodel is a statistical model for a graph, which extends the stochastic blockmodel by allowing every node to randomly choose a different community each time a decision of whether to form an edge is made. Whereas spectral analysis for the stochastic blockmodel is increasingly well established, theory for the mixed membership case is considerably less developed. Here we show that adjacency spectral embedding into Rk\mathbb{R}^k, followed by fitting the minimum volume enclosing convex kk-polytope to the k−1k-1 principal components, leads to a consistent estimate of a kk-community mixed membership stochastic blockmodel. The key is to identify a direct correspondence between the mixed membership stochastic blockmodel and the random dot product graph, which greatly facilitates theoretical analysis. Specifically, a 2→∞2 \rightarrow \infty norm and central limit theorem for the random dot product graph are exploited to respectively show consistency and partially correct the bias of the procedure.Comment: 12 pages, 6 figure
    • 

    corecore