744 research outputs found

    Mixed Logical Inference and Probabilistic Planning for Robots in Unreliable Worlds

    Get PDF
    Abstract—Deployment of robots in practical domains poses key knowledge representation and reasoning challenges. Robots need to represent and reason with incomplete domain knowl-edge, acquiring and using sensor inputs based on need and availability. This paper presents an architecture that exploits the complementary strengths of declarative programming and probabilistic graphical models as a step towards addressing these challenges. Answer Set Prolog (ASP), a declarative language, is used to represent, and perform inference with, incomplete domain knowledge, including default information that holds in all but a few exceptional situations. A hierarchy of partially observable Markov decision processes (POMDPs) probabilistically models the uncertainty in sensor input processing and navigation. Non-monotonic logical inference in ASP is used to generate a multi-nomial prior for probabilistic state estimation with the hierarchy of POMDPs. It is also used with historical data to construct a Beta (meta) density model of priors for metareasoning and early termination of trials when appropriate. Robots equipped with this architecture automatically tailor sensor input processing and navigation to tasks at hand, revising existing knowledge using information extracted from sensor inputs. The architecture is empirically evaluated in simulation and on a mobile robot visually localizing objects in indoor domains. I

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    KR3^3: An Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.Comment: The paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture for robots that combines the complementary strengths of probabilistic graphical models and declarative programming to represent and reason with logic-based and probabilistic descriptions of uncertainty and domain knowledge. An action language is extended to support non-boolean fluents and non-deterministic causal laws. This action language is used to describe tightly-coupled transition diagrams at two levels of granularity, with a fine-resolution transition diagram defined as a refinement of a coarse-resolution transition diagram of the domain. The coarse-resolution system description, and a history that includes (prioritized) defaults, are translated into an Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a plan of abstract actions. To implement each such abstract action, the robot automatically zooms to the part of the fine-resolution transition diagram relevant to this action. A probabilistic representation of the uncertainty in sensing and actuation is then included in this zoomed fine-resolution system description, and used to construct a partially observable Markov decision process (POMDP). The policy obtained by solving the POMDP is invoked repeatedly to implement the abstract action as a sequence of concrete actions, with the corresponding observations being recorded in the coarse-resolution history and used for subsequent reasoning. The architecture is evaluated in simulation and on a mobile robot moving objects in an indoor domain, to show that it supports reasoning with violation of defaults, noisy observations and unreliable actions, in complex domains.Comment: 72 pages, 14 figure

    What happened and why? A mixed architecture for planning and explanation generation in robotics

    Get PDF

    A Survey of Knowledge-based Sequential Decision Making under Uncertainty

    Get PDF
    Reasoning with declarative knowledge (RDK) and sequential decision-making (SDM) are two key research areas in artificial intelligence. RDK methods reason with declarative domain knowledge, including commonsense knowledge, that is either provided a priori or acquired over time, while SDM methods (probabilistic planning and reinforcement learning) seek to compute action policies that maximize the expected cumulative utility over a time horizon; both classes of methods reason in the presence of uncertainty. Despite the rich literature in these two areas, researchers have not fully explored their complementary strengths. In this paper, we survey algorithms that leverage RDK methods while making sequential decisions under uncertainty. We discuss significant developments, open problems, and directions for future work
    • …
    corecore