1,258 research outputs found

    An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method

    Full text link
    Based on a new approximation method, namely pseudospectral method, a solution for the three order nonlinear ordinary differential laminar boundary layer Falkner-Skan equation has been obtained on the semi-infinite domain. The proposed approach is equipped by the orthogonal Hermite functions that have perfect properties to achieve this goal. This method solves the problem on the semi-infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, this method reduces solution of the problem to solution of a system of algebraic equations. We also present the comparison of this work with numerical results and show that the present method is applicable.Comment: 15 pages, 4 figures; Published online in the journal of "Communications in Nonlinear Science and Numerical Simulation

    Stability of Correction Procedure via Reconstruction With Summation-by-Parts Operators for Burgers' Equation Using a Polynomial Chaos Approach

    Full text link
    In this paper, we consider Burgers' equation with uncertain boundary and initial conditions. The polynomial chaos (PC) approach yields a hyperbolic system of deterministic equations, which can be solved by several numerical methods. Here, we apply the correction procedure via reconstruction (CPR) using summation-by-parts operators. We focus especially on stability, which is proven for CPR methods and the systems arising from the PC approach. Due to the usage of split-forms, the major challenge is to construct entropy stable numerical fluxes. For the first time, such numerical fluxes are constructed for all systems resulting from the PC approach for Burgers' equation. In numerical tests, we verify our results and show also the advantage of the given ansatz using CPR methods. Moreover, one of the simulations, i.e. Burgers' equation equipped with an initial shock, demonstrates quite fascinating observations. The behaviour of the numerical solutions from several methods (finite volume, finite difference, CPR) differ significantly from each other. Through careful investigations, we conclude that the reason for this is the high sensitivity of the system to varying dissipation. Furthermore, it should be stressed that the system is not strictly hyperbolic with genuinely nonlinear or linearly degenerate fields

    Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients

    Get PDF
    Elliptic partial differential equations with diffusion coefficients of lognormal form, that is a=exp(b)a=exp(b), where bb is a Gaussian random field, are considered. We study the â„“p\ell^p summability properties of the Hermite polynomial expansion of the solution in terms of the countably many scalar parameters appearing in a given representation of bb. These summability results have direct consequences on the approximation rates of best nn-term truncated Hermite expansions. Our results significantly improve on the state of the art estimates available for this problem. In particular, they take into account the support properties of the basis functions involved in the representation of bb, in addition to the size of these functions. One interesting conclusion from our analysis is that in certain relevant cases, the Karhunen-Lo\`eve representation of bb may not be the best choice concerning the resulting sparsity and approximability of the Hermite expansion
    • …
    corecore