1,618 research outputs found

    Laser-Based Detection and Tracking of Moving Obstacles to Improve Perception of Unmanned Ground Vehicles

    Get PDF
    El objetivo de esta tesis es desarrollar un sistema que mejore la etapa de percepción de vehículos terrestres no tripulados (UGVs) heterogéneos, consiguiendo con ello una navegación robusta en términos de seguridad y ahorro energético en diferentes entornos reales, tanto interiores como exteriores. La percepción debe tratar con obstáculos estáticos y dinámicos empleando sensores heterogéneos, tales como, odometría, sensor de distancia láser (LIDAR), unidad de medida inercial (IMU) y sistema de posicionamiento global (GPS), para obtener la información del entorno con la precisión más alta, permitiendo mejorar las etapas de planificación y evitación de obstáculos. Para conseguir este objetivo, se propone una etapa de mapeado de obstáculos dinámicos (DOMap) que contiene la información de los obstáculos estáticos y dinámicos. La propuesta se basa en una extensión del filtro de ocupación bayesiana (BOF) incluyendo velocidades no discretizadas. La detección de velocidades se obtiene con Flujo Óptico sobre una rejilla de medidas LIDAR discretizadas. Además, se gestionan las oclusiones entre obstáculos y se añade una etapa de seguimiento multi-hipótesis, mejorando la robustez de la propuesta (iDOMap). La propuesta ha sido probada en entornos simulados y reales con diferentes plataformas robóticas, incluyendo plataformas comerciales y la plataforma (PROPINA) desarrollada en esta tesis para mejorar la colaboración entre equipos de humanos y robots dentro del proyecto ABSYNTHE. Finalmente, se han propuesto métodos para calibrar la posición del LIDAR y mejorar la odometría con una IMU

    Dynamic obstacles avoidance algorithms for unmanned ground vehicles

    Get PDF
    En las últimas décadas, los vehículos terrestres no tripulados (UGVs) están siendo cada vez más empleados como robots de servicios. A diferencia de los robots industriales, situados en posiciones fijas y controladas, estos han de trabajar en entornos dinámicos, compartiendo su espacio con otros vehículos y personas. Los UGVs han de ser capaces de desplazarse sin colisionar con ningún obstáculo, de tal manera que puedan asegurar tanto su integridad como la del entorno. En el estado del arte encontramos algoritmos de navegación autónoma diseñados para UGVs que son capaces de planificar rutas de forma segura con objetos estáticos y trabajando en entornos parcialmente controlados. Sin embargo, cuando estos entornos son dinámicos, se planifican rutas más peligrosas y que a menudo requieren de un mayor consumo de energía y recursos, e incluso pueden llegar a bloquear el UGV en un mínimo local. En esta tesis, la adaptación de algunos algoritmos disponibles en el estado del arte para trabajar en entornos dinámicos han sido planteados. Estos algoritmos incluyen información temporal tales como los basados en arcos de curvatura (PCVM y DCVM) y los basados en ventanas dinámicas (DW4DO y DW4DOT). Además, se ha propuesto un planificador global basado en Lattice State Planner (DLP) que puede resolver situaciones donde los evitadores de obstáculos reactivos no funcionan. Estos algoritmos han sido validados tanto en simulación como en entornos reales, utilizando distintas plataformas robóticas, entre las que se incluye un robot asistente (RoboShop) diseñado y construido en el marco de esta tesis

    Optimization and Mathematical Modelling for Path Planning of Co-operative Intra-logistics Automated Vehicles

    Get PDF
    Small indoor Autonomous Vehicles have revolutionized the operation of pick-pack-and-ship warehouses. The challenges for path planning and co-operation in this domain stem from uncontrolled environments including workspaces shared with humans and human-operated vehicles. Solutions are needed which scale up to the largest existing sites with thousands of vehicles and beyond. These challenges might be familiar to anyone modelling road traffic control with the introduction of Autonomous Vehicles, but key differences in the level of decision autonomy lead to different approaches to conflict-resolution. This thesis proposes a decomposition of site-wide conflict-free motion planning into individual shortest paths though a roadmap representing the free space across the site, zone-based speed optimization to resolve conflicts in the vicinity of one intersection and individual path optimization for local obstacles. In numerical tests the individual path optimization based on clothoid basis functions created paths traversable by different vehicle configurations (steering rate limit, lateral acceleration limit and wheelbase) only by choosing an appropriate maximum longitudinal speed. Using two clothoid segments per convex region was sufficient to reach any goal, and the problem could be solved reliably and quickly with sequential quadratic programming due to the approximate graph method used to determine a good sequence of obstacle-free regions to the local goal. A design for zone-based intersection management, obtained by minimizing a linear objective subject to quadratic constraints was refined by the addition of a messaging interface compatible with the path adaptations based on clothoids. A new approximation of the differential constraints was evaluated in a multi-agent simulation of an elementary intersection layout. The proposed FIFO ordering heuristic converted the problem into a linear program. Interior point methods either found a solution quickly or showed that the problem was infeasible, unlike a quadratic constraint formulation with ordering flexibility. Subsequent tests on more complex multi-lane intersection geometries showed the quadratic constraint formulation converged to significantly better solutions than FIFO at the cost of longer and unpredictable search time. Both effects were magnified as the number of vehicles increased. To properly address site-wide conflict-free motion planning, it is essential that the local solutions are compatible with each other at the zone boundaries. The intersection management design was refined with new boundary constraints to ensure compatibility and smooth transitions without the need for a backup system. In numerical tests it was found that the additional boundary constraints were sufficient to ensure smooth transitions on an idealized map including two intersections

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Mobile robots and vehicles motion systems: a unifying framework

    Get PDF
    Robots perform many different activities in order to accomplish their tasks. The robot motion capability is one of the most important ones for an autonomous be- havior in a typical indoor-outdoor mission (without it other tasks can not be done), since it drastically determines the global success of a robotic mission. In this thesis, we focus on the main methods for mobile robot and vehicle motion systems and we build a common framework, where similar components can be interchanged or even used together in order to increase the whole system performance

    Simulation in Automated Guided Vehicle System Design

    Get PDF
    The intense global competition that manufacturing companies face today results in an increase of product variety and shorter product life cycles. One response to this threat is agile manufacturing concepts. This requires materials handling systems that are agile and capable of reconfiguration. As competition in the world marketplace becomes increasingly customer-driven, manufacturing environments must be highly reconfigurable and responsive to accommodate product and process changes, with rigid, static automation systems giving way to more flexible types. Automated Guided Vehicle Systems (AGVS) have such capabilities and AGV functionality has been developed to improve flexibility and diminish the traditional disadvantages of AGV-systems. The AGV-system design is however a multi-faceted problem with a large number of design factors of which many are correlating and interdependent. Available methods and techniques exhibit problems in supporting the whole design process. A research review of the work reported on AGVS development in combination with simulation revealed that of 39 papers only four were industrially related. Most work was on the conceptual design phase, but little has been reported on the detailed simulation of AGVS. Semi-autonomous vehicles (SA V) are an innovative concept to overcome the problems of inflexible -systems and to improve materials handling functionality. The SA V concept introduces a higher degree of autonomy in industrial AGV -systems with the man-in-the-Ioop. The introduction of autonomy in industrial applications is approached by explicitly controlling the level of autonomy at different occasions. The SA V s are easy to program and easily reconfigurable regarding navigation systems and material handling equipment. Novel approaches to materials handling like the SA V -concept place new requirements on the AGVS development and the use of simulation as a part of the process. Traditional AGV -system simulation approaches do not fully meet these requirements and the improved functionality of AGVs is not used to its full power. There is a considerflble potential in shortening the AGV -system design-cycle, and thus the manufacturing system design-cycle, and still achieve more accurate solutions well suited for MRS tasks. Recent developments in simulation tools for manufacturing have improved production engineering development and the tools are being adopted more widely in industry. For the development of AGV -systems this has not fully been exploited. Previous research has focused on the conceptual part of the design process and many simulation approaches to AGV -system design lack in validity. In this thesis a methodology is proposed for the structured development of AGV -systems using simulation. Elements of this methodology address the development of novel functionality. The objective of the first research case of this research study was to identify factors for industrial AGV -system simulation. The second research case focuses on simulation in the design of Semi-autonomous vehicles, and the third case evaluates a simulation based design framework. This research study has advanced development by offering a framework for developing testing and evaluating AGV -systems, based on concurrent development using a virtual environment. The ability to exploit unique or novel features of AGVs based on a virtual environment improves the potential of AGV-systems considerably.University of Skovde. European Commission for funding the INCO/COPERNICUS Projec

    Towards autonomous robotic systems: seamless localization and trajectory planning in dynamic environments

    Get PDF
    Evolucionar hacia una sociedad más automatizada y robotizada en la que podamos convivir con sistemas robóticos que desempeñen tareas poco atractivas o peligrosas para el ser humano, supone plantearnos, entre otras cuestiones, qué soluciones existen actualmente y cuáles son las mejoras a incorporar a las mismas. La mayoría de aplicaciones ya desarrolladas son soluciones robustas y adecuadas para el fin que se diseñan. Sin embargo, muchas de las técnicas implantadas podrían funcionar de manera más eficiente o bien adaptarse a otras necesidades. Asimismo, en la mayoría de aplicaciones robóticas adquiere importancia el contexto en el que desempeñan su función. Hay entornos estructurados y fáciles de modelar, mientras que otros apenas presentan características utilizables para obtener información de los mismos.Esta tesis se centra en dos de las funciones básicas que debe tener cualquier sistema robótico autónomo para desplazarse de forma robusta en cualquier tipo de entorno: la localización y el cálculo de trayectorias seguras. Además, los escenarios en los que se desea poner en práctica la investigación son complejos: un parque industrial con zonas cuyas características de entorno (usualmente geométricas) son utilizadas para que un robot se localice, varían; y entornos altamente ocupados por otros agentes móviles, como el vestíbulo de un teatro, en los que se debe considerar las características dinámicas de los demás para calcular un movimiento que sea seguro tanto para el robot como para los demás agentes.La información que se puede percibir de los escenarios con ambientes no homogéneos, por ejemplo de interior y exterior, suele ser de características diferentes. Cuando la información que se dispone del entorno proviene de sensores diferentes hay que definir un método que integre las medidas para tener una estimación de la localización del robot en todo momento. El tema de la localización se ha investigado intensamente y existen soluciones robustas en interior y exterior, pero no tanto en zonas mixtas. En las zonas de transición interior-exterior y viceversa es necesario utilizar sensores que funcionan correctamente en ambas zonas, realizando una integración sensorial durante la transición para evitar discontinuidades en la localización o incluso que el robot se pierda. De esta manera la navegación autónoma, dependiente de la correcta localización, funcionará sin discontinuidades ni movimientos bruscos.En entornos dinámicos es esencial definir una forma de representar la información que refleje su naturaleza cambiante. Por ello, se han definido en la literatura diferentes modelos que representan el dinamismo del entorno, y que permiten desarrollar una planificación de trayectorias directamente sobre las variables que controlan el movimiento del robot, en nuestro caso, las velocidades angular y lineal para un robot diferencial. Los planificadores de trayectorias y navegadores diseñados para entornos estáticos no funcionan correctamente en escenarios dinámicos, ya que son puramente reactivos. Es necesario tener en cuenta la predicción del movimiento de los obstáculos móviles para planificar trayectorias seguras sin colisión. Los temas abordados y las contribuciones aportadas en esta tesis son:• Diseño de un sistema de localización continua en entornos de interior y exterior, poniendo especial interés en la fusión de las medidas obtenidas de diferentes sensores durante las transiciones interior-exterior, aspecto poco abordado en la literatura. De esta manera se obtiene una estimación acotada de la localización durante toda la navegación del robot. Además, la localización se integra con una técnica reactiva de navegación, construyendo un sistema completo de navegación. El sistema integrado se ha evaluado en un escenario real de un parque industrial, para una aplicación logística en la que las transiciones interior-exterior y viceversa suponían un problema fundamental a resolver.• Definición de un modelo para representar el entorno dinámico del robot, llamado Dynamic Obstacle Velocity-Time Space (DOVTS). En este modelo aparecen representadas las velocidades permitidas y prohibidas para que el robot evite las colisiones con los obstáculos de alrededor. Este modelo puede ser utilizado por algoritmos de navegación ya existentes, y sirve de base para las nuevas técnicas de navegación desarrolladas en la tesis y explicadas en los siguientes puntos. • Desarrollo de una técnica de planificación y navegación basada en el modelo DOVTS. En este modelo se identifica un conjunto de situaciones relativas entre el robot y los obstáculos. A cada situación se asocia una estrategia de navegación, que considera la seguridad del robot para evitar colisiones, a la vez que intenta minimizar el tiempo al objetivo.• Implementación de una técnica de planificación y navegación basada en el modelo DOVTS, que utiliza explícitamente la información del tiempo para la planificación del movimiento. Se desarrolla un algoritmo A*-like que planifica los movimientos de los siguientes instantes, incrementando la maniobrabilidad del robot para la evitación de obstáculos respecto al método del anterior punto, a costa de un mayor tiempo de cómputo. Se analizan las diferencias en el comportamiento global del robot con respecto a la técnica anterior.Los diferentes aspectos que se han investigado en esta tesis tratan de avanzar en el objetivo de conseguir robots autónomos que puedan adaptarse a nuestra vida cotidiana en escenarios que son típicamente dinámicos de una forma natural y segura.<br /

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms

    Design and Optimization of a Robot for Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    Get PDF
    RÉSUMÉ Dans l’industrie de fabrication de turbine hydraulique, toutes les surfaces de turbines qui sont en contact avec de l’eau devraient être polies afin d’obtenir la qualité et l’efficacité maximales. Pour cela, il est nécessaire d’utiliser une méthode de polissage qui peut avoir accès à toutes les surfaces des turbines incluant leurs bords, leurs zones restreintes et leurs courbures serrées. En raison des propriétés particulières qu’offre la technique de polissage par jet d’eau abrasif, celle-ci peut être utilisée pour accomplir cette tâche. Par conséquent, dans cette recherche, les propriétés de cette méthode non-conventionnelle sont examinées dans un premier temps et les principaux paramètres affectant ses performances sont alors déterminés. Ensuite, les conditions nécessaires de manipulations de la buse de pulvérisation vis-à-vis des surfaces courbes sont étudiées et les propriétés d’un bras robotisé pour manipuler celle-ci sont obtenues afin de réaliser cette tâche d’une manière appropriée. Par après, plusieurs mécanismes robotiques tels que des mécanismes sériels, parallèles à membrures, parallèles à câbles, et des robots hybrides sont considérés et leurs capacités à être utilisé dans ce processus sont analysées. Il est alors démontré qu’une l’architecture hybride est le meilleur candidat à retenir pour le design d’un robot de polissage par jet d’eau abrasif. Ensuite, l’architecture conceptuelle d’un robot hybride à 5 DDL est proposée. La structure du robot est constituée d’un mécanisme parallèle à câbles à 3 DDL et d’un poignet sériel à 2 DDL. Afin d’améliorer les propriétés cinématiques du mécanisme à câbles tout en minimisant le nombre d’actionneurs nécessaires, il est proposé d’utiliser des différentiels pour guider ce robot manipulateur. Aussi, la rigidité et la compacité du mécanisme sont améliorées en utilisant une liaison prismatique. Par la suite, les systèmes à câbles différentiels sont examinés et les différences entre leurs propriétés cinématiques et celles de systèmes actionnés indépendamment pour chaque câble sont décrites. Il est démontré que la force résultante de tous les câbles d’un différentiel à câbles doit être prise en compte dans son analyse cinématique. En effet, dans un système différentiel planaire, la direction de la force résultante n’est pas fixée vers un point particulier. Mais plutôt, elle se déplace dans le plan de ce système différentiel. Cette propriété peut être bénéfique pour les propriétés cinématiques des robots à câbles. En comparant deux types d’espace de travail de plusieurs robots planaires actionnés par des mécanismes différentiels par rapport à leurs équivalents pleinement actionnés, il est alors montré qu’en utilisant ces mécanismes, les espaces de travail des robots planaires à câbles peuvent être améliorés. Cependant, cette même propriété qui augmente la plage de variation de la direction de la force résultante dans un câble différentiel, diminue aussi son amplitude. Ainsi, le design optimal d’un différentiel à câble résulte d’un compromis entre ces deux propriétés.----------ABSTRACT In hydraulic turbine manufacturing, all surfaces of the turbines which are in contact with the water flow should be polished to obtain the desired quality and maximal efficiency. For this, it is needed to use an effective polishing method which can have access to all surfaces of the turbines including edges, narrow areas and tight bends. Because of the particular properties of the abrasive waterjet polishing technique, it can be used to accomplish this task. Therefore, in this research, the properties of this non-conventional method are first investigated and the main parameters affecting its performance are then determined. Next, the manipulation requirements of the jet nozzle over free-form surfaces are studied and the properties of a robotic arm to appropriately perform this task are obtained. Afterwards, several robotic mechanisms, e.g., serial, linkage-driven parallel, cabledriven parallel, and hybrid robots are considered and their abilities to be used in this process are investigated. It is then shown that a hybrid architecture is the best candidate for the design of an abrasive waterjet polishing robot. Next, the conceptual design of a 5-DOF hybrid robot is proposed. The structure of this robot is made of a 3-DOF cable-driven parallel mechanism and a 2-DOF serial wrist. To improve the kinematic properties of the cable-driven mechanism while the number of required actuators is kept at a minimum, it is proposed to use cable differentials to drive this manipulator. Also, the rigidity and compactness of the mechanism is improved through the use of a prismatic joint in its structure. Afterwards, differentially driven cable systems are investigated and the differences between their kinematic properties and these of independently actuated cables are described. It is shown that the resultant force of all cables of a cable differential should be taken into account in its kinematic analysis. Indeed, in a planar differential, the direction of the resultant force is not fixed toward a particular point. Instead, it moves within the plane of that differential. This property can be beneficial in the kinematic properties of differentially driven cable robots. By comparing two types of workspaces of several planar robots actuated by differentials with their fully actuated counterparts, it is then shown that using these mechanisms, these workspaces of planar cable robots can be improved. However, the same property that increases the range of variation of the resultant force direction in a cable differential, decreases its magnitude. Thus, the optimal design of a cable differential is a trade-off between these two properties. Next, a synthesis method is presented to find all possible arrangements of the cable differentials to generalize the idea of using such mechanisms in the design of planar cable robots. Additionally, the application of differentials in spatial robots is also investigated and it is shown that they have properties similar to the planar types
    corecore