81,208 research outputs found

    Direct, physically-motivated derivation of the contagion condition for spreading processes on generalized random networks

    Get PDF
    For a broad range single-seed contagion processes acting on generalized random networks, we derive a unifying analytic expression for the possibility of global spreading events in a straightforward, physically intuitive fashion. Our reasoning lays bare a direct mechanical understanding of an archetypal spreading phenomena that is not evident in circuitous extant mathematical approaches.Comment: 4 pages, 1 figure, 1 tabl

    Mixing patterns and community structure in networks

    Full text link
    Common experience suggests that many networks might possess community structure - division of vertices into groups, with a higher density of edges within groups than between them. Here we describe a new computer algorithm that detects structure of this kind. We apply the algorithm to a number of real-world networks and show that they do indeed possess non-trivial community structure. We suggest a possible explanation for this structure in the mechanism of assortative mixing, which is the preferential association of network vertices with others that are like them in some way. We show by simulation that this mechanism can indeed account for community structure. We also look in detail at one particular example of assortative mixing, namely mixing by vertex degree, in which vertices with similar degree prefer to be connected to one another. We propose a measure for mixing of this type which we apply to a variety of networks, and also discuss the implications for network structure and the formation of a giant component in assortatively mixed networks.Comment: 21 pages, 9 postscript figures, 2 table

    Structure of Peer-to-Peer Social Networks

    Get PDF
    This paper presents a statistical analysis of the structure of Peer-to-Peer (P2P) social networks that captures social associations of distributed peers in resource sharing. Peer social networks appear to be mainly composed of pure resource providers that guarantee high resource availability and reliability of P2P systems. The major peers that both provide and request resources are only a small fraction. The connectivity between peers, including undirected, directed (out and in) and weighted connections, is scale-free and the social networks of all peers and major peers are small world networks. The analysis also confirms that peer social networks show in general disassortative correlations, except that active providers are connected between each other and by active requesters. The study presented in this paper gives a better understanding of peer relationships in resource sharing, which may help a better design of future P2P networks and open the path to the study of transport processes on top of real P2P topologies.Comment: APS Style, 8 pages, 5 figures and 4 tables. Final versio

    The structure and function of complex networks

    Full text link
    Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.Comment: Review article, 58 pages, 16 figures, 3 tables, 429 references, published in SIAM Review (2003

    A simple person's approach to understanding the contagion condition for spreading processes on generalized random networks

    Full text link
    We present derivations of the contagion condition for a range of spreading mechanisms on families of generalized random networks and bipartite random networks. We show how the contagion condition can be broken into three elements, two structural in nature, and the third a meshing of the contagion process and the network. The contagion conditions we obtain reflect the spreading dynamics in a clear, interpretable way. For threshold contagion, we discuss results for all-to-all and random network versions of the model, and draw connections between them.Comment: 10 pages, 9 figures; chapter to appear in "Spreading Dynamics in Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur

    Exact solutions for social and biological contagion models on mixed directed and undirected, degree-correlated random networks

    Get PDF
    We derive analytic expressions for the possibility, probability, and expected size of global spreading events starting from a single infected seed for a broad collection of contagion processes acting on random networks with both directed and undirected edges and arbitrary degree-degree correlations. Our work extends previous theoretical developments for the undirected case, and we provide numerical support for our findings by investigating an example class of networks for which we are able to obtain closed-form expressions.Comment: 10 pages, 3 figure

    Effects of network topology, transmission delays, and refractoriness on the response of coupled excitable systems to a stochastic stimulus

    Full text link
    We study the effects of network topology on the response of networks of coupled discrete excitable systems to an external stochastic stimulus. We extend recent results that characterize the response in terms of spectral properties of the adjacency matrix by allowing distributions in the transmission delays and in the number of refractory states, and by developing a nonperturbative approximation to the steady state network response. We confirm our theoretical results with numerical simulations. We find that the steady state response amplitude is inversely proportional to the duration of refractoriness, which reduces the maximum attainable dynamic range. We also find that transmission delays alter the time required to reach steady state. Importantly, neither delays nor refractoriness impact the general prediction that criticality and maximum dynamic range occur when the largest eigenvalue of the adjacency matrix is unity
    • …
    corecore