1,087 research outputs found

    A survey on pseudonym changing strategies for Vehicular Ad-Hoc Networks

    Full text link
    The initial phase of the deployment of Vehicular Ad-Hoc Networks (VANETs) has begun and many research challenges still need to be addressed. Location privacy continues to be in the top of these challenges. Indeed, both of academia and industry agreed to apply the pseudonym changing approach as a solution to protect the location privacy of VANETs'users. However, due to the pseudonyms linking attack, a simple changing of pseudonym shown to be inefficient to provide the required protection. For this reason, many pseudonym changing strategies have been suggested to provide an effective pseudonym changing. Unfortunately, the development of an effective pseudonym changing strategy for VANETs is still an open issue. In this paper, we present a comprehensive survey and classification of pseudonym changing strategies. We then discuss and compare them with respect to some relevant criteria. Finally, we highlight some current researches, and open issues and give some future directions

    Users Collaborative Mix-Zone to Resist the Query Content and Time Interval Correlation Attacks

    Get PDF
    In location-based services of continuous query, it is easier than snapshot to confirm whether a location belongs to a particular user, because sole location can be composed into a trajectory by profile correlation. In order to cut off the correlation and disturb the sub-trajectory, an un-detective region called mix-zone was proposed. However, at the time of this writing, the existing algorithms of this type mainly focus on the profiles of ID, passing time, transition probability, mobility patterns as well as road characteristics. In addition, there is still no standard way of coping with attacks of correlating each location by mining out query content and time interval from the sub-trajectory. To cope with such types of attack, users have to generalize their query contents and time intervals similarity. Hence, this paper first provided an attack model to simulate the adversary correlating the real location with a higher probability of query content and time interval similarity. Then a user collaboration mix-zone (CoMix) that can generalize these two types of profiles is proposed, so as to achieve location privacy. In CoMix, each user shares the common profile set to lowering the probability of success opponents to get the actual position through the correlation of location. Thirdly, entropy is utilized to measure the level of privacy preservation. At last, this paper further verifies the effectiveness and efficiency of the proposed algorithm by experimental evaluations

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Security and Privacy Preservation in Vehicular Social Networks

    Get PDF
    Improving road safety and traffic efficiency has been a long-term endeavor for the government, automobile industry and academia. Recently, the U.S. Federal Communication Commission (FCC) has allocated a 75 MHz spectrum at 5.9 GHz for vehicular communications, opening a new door to combat the road fatalities by letting vehicles communicate to each other on the roads. Those communicating vehicles form a huge Ad Hoc Network, namely Vehicular Ad Hoc Network (VANET). In VANETs, a variety of applications ranging from the safety related (e.g. emergence report, collision warning) to the non-safety related (e.g., delay tolerant network, infortainment sharing) are enabled by vehicle-to-vehicle (V-2-V) and vehicle-to-roadside (V-2-I) communications. However, the flourish of VANETs still hinges on fully understanding and managing the challenging issues over which the public show concern, particularly, security and privacy preservation issues. If the traffic related messages are not authenticated and integrity-protected in VANETs, a single bogus and/or malicious message can potentially incur a terrible traffic accident. In addition, considering VANET is usually implemented in civilian scenarios where locations of vehicles are closely related to drivers, VANET cannot be widely accepted by the public if VANET discloses the privacy information of the drivers, i.e., identity privacy and location privacy. Therefore, security and privacy preservation must be well addressed prior to its wide acceptance. Over the past years, much research has been done on considering VANET's unique characteristics and addressed some security and privacy issues in VANETs; however, little of it has taken the social characteristics of VANET into consideration. In VANETs, vehicles are usually driven in a city environment, and thus we can envision that the mobility of vehicles directly reflects drivers' social preferences and daily tasks, for example, the places where they usually go for shopping or work. Due to these human factors in VANETs, not only the safety related applications but also the non-safety related applications will have some social characteristics. In this thesis, we emphasize VANET's social characteristics and introduce the concept of vehicular social network (VSN), where both the safety and non-safety related applications in VANETs are influenced by human factors including human mobility, human self-interest status, and human preferences. In particular, we carry on research on vehicular delay tolerant networks and infotainment sharing --- two important non-safety related applications of VSN, and address the challenging security and privacy issues related to them. The main contributions are, i) taking the human mobility into consideration, we first propose a novel social based privacy-preserving packet forwarding protocol, called SPRING, for vehicular delay tolerant network, which is characterized by deploying roadside units (RSUs) at high social intersections to assist in packet forwarding. With the help of high-social RSUs, the probability of packet drop is dramatically reduced and as a result high reliability of packet forwarding in vehicular delay tolerant network can be achieved. In addition, the SPRING protocol also achieves conditional privacy preservation and resist most attacks facing vehicular delay tolerant network, such as packet analysis attack, packet tracing attack, and black (grey) hole attacks. Furthermore, based on the ``Sacrificing the Plum Tree for the Peach Tree" --- one of the Thirty-Six Strategies of Ancient China, we also propose a socialspot-based packet forwarding (SPF) protocol for protecting receiver-location privacy, and present an effective pseudonyms changing at social spots strategy, called PCS, to facilitate vehicles to achieve high-level location privacy in vehicular social network; ii) to protect the human factor --- interest preference privacy in vehicular social networks, we propose an efficient privacy-preserving protocol, called FLIP, for vehicles to find like-mined ones on the road, which allows two vehicles sharing the common interest to identify each other and establish a shared session key, and at the same time, protects their interest privacy (IP) from other vehicles who do not share the same interest on the road. To generalize the FLIP protocol, we also propose a lightweight privacy-preserving scalar product computation (PPSPC) protocol, which, compared with the previously reported PPSPC protocols, is more efficient in terms of computation and communication overheads; and iii) to deal with the human factor -- self-interest issue in vehicular delay tolerant network, we propose a practical incentive protocol, called Pi, to stimulate self-interest vehicles to cooperate in forwarding bundle packets. Through the adoption of the proper incentive policies, the proposed Pi protocol can not only improve the whole vehicle delay tolerant network's performance in terms of high delivery ratio and low average delay, but also achieve the fairness among vehicles. The research results of the thesis should be useful to the implementation of secure and privacy-preserving vehicular social networks

    Design a Cloud Security Model in VANET Communication: Design and Architecture

    Get PDF
    During the last few years, Intelligent Transportation System (ITS) has been progressed at a rapid rate, which aimed to improve the transportation activities in the terms of the safety and efficiency. According to many issues with the traditional Vehicular Ad-Hoc Networks (VANET), some efforts are made to merge the VANET with the cloud technology. This work proposes the VANET based on the cloud (V2Cloud), and designs a security model framework that is hosted on the cloud to manage the security services, and provide a secure VANET communication between the different entities eg vehicles, authorities and etc. This security model framework is called VANET Security as a Service (VSaaS). Our works will presented in a set of two papers. In this first one, it presents VSaaS design and architecture in order to show that the VSaaS fulfills the VANET's security requirements, and protects the VANET against the different types of attacks. The second paper will present the progress towards the implementation and the security analysis of the proposed architecture, along with the results of the performance of the security overhead for the secure Vehicle Information Messages (VIMs), which are sent by vehicles to the cloud as a coarse-grained information

    Vehicular Internet: Security & Privacy Challenges and Opportunities

    Get PDF
    The vehicular internet will drive the future of vehicular technology and intelligent transportation systems (ITS). Whether it is road safety, infotainment, or driver-less cars, the vehicular internet will lay the foundation for the future of road travel. Governments and companies are pursuing driver-less vehicles as they are considered to be more reliable than humans and, therefore, safer. The vehicles today are not just a means of transportation but are also equipped with a wide range of sensors that provide valuable data. If vehicles are enabled to share data that they collect with other vehicles or authorities for decision-making and safer driving, they thereby form a vehicular network. However, there is a lot at stake in vehicular networks if they are compromised. With the stakes so high, it is imperative that the vehicular networks are secured and made resilient to any attack or attempt that may have serious consequences. The vehicular internet can also be the target of a cyber attack, which can be devastating. In this paper, the opportunities that the vehicular internet offers are presented and then various security and privacy aspects are discussed and some solutions are presented

    Virtual Pseudonym-Changing and Dynamic Grouping Policy for Privacy Preservation in VANETs

    Get PDF
    Location privacy is a critical problem in the vehicular communication networks. Vehicles broadcast their road status information to other entities in the network through beacon messages to inform other entities in the network. The beacon message content consists of the vehicle ID, speed, direction, position, and other information. An adversary could use vehicle identity and positioning information to determine vehicle driver behavior and identity at different visited location spots. A pseudonym can be used instead of the vehicle ID to help in the vehicle location privacy. These pseudonyms should be changed in appropriate way to produce uncertainty for any adversary attempting to identify a vehicle at different locations. In the existing research literature, pseudonyms are changed during silent mode between neighbors. However, the use of a short silent period and the visibility of pseudonyms of direct neighbors provides a mechanism for an adversary to determine the identity of a target vehicle at specific locations. Moreover, privacy is provided to the driver, only within the RSU range; outside it, there is no privacy protection. In this research, we address the problem of location privacy in a highway scenario, where vehicles are traveling at high speeds with diverse traffic density. We propose a Dynamic Grouping and Virtual Pseudonym-Changing (DGVP) scheme for vehicle location privacy. Dynamic groups are formed based on similar status vehicles and cooperatively change pseudonyms. In the case of low traffic density, we use a virtual pseudonym update process. We formally present the model and specify the scheme through High-Level Petri Nets (HLPN). The simulation results indicate that the proposed method improves the anonymity set size and entropy, provides lower traceability, reduces impact on vehicular network applications, and has lower computation cost compared to existing research work
    corecore