163,623 research outputs found

    Quantification of DNA Products Using Ion-Pair Reverse Phase Liquid Chromatography

    Get PDF
    The transcription of DNA via RNA polymerases is a fundamental process in cellular systems. In eukaryotic cells, we observe transcription in the nucleus (via genomic DNA) as well as in the mitochondria (via mitochondrial DNA). There are many tools available to investigate nuclear transcription; however, few tools exist to study mitochondrial transcription even though the mitochondrial DNA encodes several essential proteins. Recently an in vitro transcription system using purified mitochondrial transcription proteins, including the mitochondrial RNA polymerase, and linear mitochondrial DNA templates has been developed. Quantitative analysis of the DNA templates can be done via ion-pair reverse-phase high performance liquid chromatography (IP-RP HPLC), a high-resolution technique in separating DNA based on size. Using IP-RP HPLC our aim is to assess the lower limits of separation, and our quantification method is based on measuring peak area and the peak height

    Endotracheal tube-induced sore throat pain and inflammation is coupled to the release of mitochondrial DNA

    Get PDF
    In the absence of infection, the pathophysiology of endotracheal tube-induced sore throat pain is unclear. Activated neutrophils release elastase, reactive oxygen species, and inflammatory cytokines known to contribute to neuropathic pain. Sterile tissue injury can cause the release of damage-associated molecular patterns such as mitochondrial DNA that promote neutrophil activation. We hypothesized that endotracheal tube-induced sore throat pain is linked to mitochondrial DNA-mediated neutrophil inflammation. A nonrandomized prospective survey for sore throat pain was conducted in 31 patients who required short-term intubation and had no evidence of upper airway infection. Patterns of neutrophil abundance, activation, and mitochondrial DNA levels were analyzed in tracheal lavage fluid following intubation and prior to extubation. Thirteen of 31 patients reported sore throat pain. Sore throat patients had high neutrophilia with elevated adhesion molecule and TLR9 expression and constitutive reactive oxygen species generation. Tracheal lavage fluid from sore throat patients accumulated mitochondrial DNA and stimulated neutrophils to release mediators associated with pain in a TLR9- and DNAse-dependent fashion. Endotracheal tube-induced sore throat is linked to the release of mitochondrial DNA and can drive TLR9-mediated inflammatory responses by neutrophils reported to cause pain. Mitigating the effects of cell-free mitochondrial DNA may prove beneficial for the prevention of endotracheal tube-mediated sore throat pain

    Archaic mitochondrial DNA inserts in modern day nuclear genomes

    No full text
    Traces of interbreeding of Neanderthals and Denisovans with modern humans in the form of archaic DNA have been detected in the genomes of present-day human populations outside sub-Saharan Africa. Up to now, only nuclear archaic DNA has been detected in modern humans; we therefore attempted to identify archaic mitochondrial DNA (mtDNA) residing in modern human nuclear genomes as nuclear inserts of mitochondrial DNA (NUMTs)

    Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene

    Get PDF
    Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F1-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised

    Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder

    Get PDF
    Background: Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. Methods: and results We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNACys was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Conclusions: Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy

    Evidence for variation in the effective population size of animal mitochondrial DNA

    Get PDF
    Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation
    • …
    corecore