37 research outputs found

    MitoP2: the mitochondrial proteome database—now including mouse data

    Get PDF
    The MitoP2 database () integrates information on mitochondrial proteins, their molecular functions and associated diseases. The central database features are manually annotated reference proteins localized or functionally associated with mitochondria supplied for yeast, human and mouse. MitoP2 enables (i) the identification of putative orthologous proteins between these species to study evolutionarily conserved functions and pathways; (ii) the integration of data from systematic genome-wide studies such as proteomics and deletion phenotype screening; (iii) the prediction of novel mitochondrial proteins using data integration and the assignment of evidence scores; and (iv) systematic searches that aim to find the genes that underlie common and rare mitochondrial diseases. The data and analysis files are referenced to data sources in PubMed and other online databases and can be easily downloaded. MitoP2 users can explore the relationship between mitochondrial dysfunctions and disease and utilize this information to conduct systems biology approaches on mitochondria

    A broad distribution of the alternative oxidase in microsporidian parasites

    Get PDF
    Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome

    Evaluating eukaryotic secreted protein prediction

    Get PDF
    BACKGROUND: Improvements in protein sequence annotation and an increase in the number of annotated protein databases has fueled development of an increasing number of software tools to predict secreted proteins. Six software programs capable of high throughput and employing a wide range of prediction methods, SignalP 3.0, SignalP 2.0, TargetP 1.01, PrediSi, Phobius, and ProtComp 6.0, are evaluated. RESULTS: Prediction accuracies were evaluated using 372 unbiased, eukaryotic, SwissProt protein sequences. TargetP, SignalP 3.0 maximum S-score and SignalP 3.0 D-score were the most accurate single scores (90–91% accurate). The combination of a positive TargetP prediction, SignalP 2.0 maximum Y-score, and SignalP 3.0 maximum S-score increased accuracy by six percent. CONCLUSION: Single predictive scores could be highly accurate, but almost all accuracies were slightly less than those reported by program authors. Predictive accuracy could be substantially improved by combining scores from multiple methods into a single composite prediction

    Prediction of protein subcellular localization based on primary sequence data

    Get PDF
    This paper describes a system called prediction of protein subcellular localization (P2SL) that predicts the subcellular localization of proteins in eukaryotic organisms based on the amino acid content of primary sequences using amino acid order. Our approach for prediction is to find the most frequent motifs for each protein (class) based on clustering and then to use these most frequent motifs as features for classification. This approach allows a classification independent of the length of the sequence. Another important property of the approach is to provide a means to perform reverse analysis and analysis to extract rules. In addition to these and more importantly, we describe the use of a new encoding scheme for the amino acids that conserves biological function based on point of accepted mutations (PAM) substitution matrix. We present preliminary results of our system on a two class (dichotomy) classifier. However, it can be extended to multiple classes with some modifications. © Springer-Verlag Berlin Heidelberg 2003

    Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an aerobic protozoan parasite that possesses mitochondrial antioxidant enzymes to safely dispose of oxygen radicals generated by cellular respiration and metabolism. As with most Apicomplexans, it also harbors a chloroplast-like organelle, the apicoplast, which hosts various biosynthetic pathways and requires antioxidant protection. Most apicoplast-resident proteins are encoded in the nuclear genome and are targeted to the organelle via a bipartite N-terminal targeting sequence. We show here that two antioxidant enzymes—a superoxide dismutase (TgSOD2) and a thioredoxin-dependent peroxidase (TgTPX1/2)—and an aconitase are dually targeted to both the apicoplast and the mitochondrion of T. gondii. In the case of TgSOD2, our results indicate that a single gene product is bimodally targeted due to an inconspicuous variation within the putative signal peptide of the organellar protein, which significantly alters its subcellular localization. Dual organellar targeting of proteins might occur frequently in Apicomplexans to serve important biological functions such as antioxidant protection and carbon metabolism

    The DNA binding parvulin Par17 is targeted to the mitochondrial matrix by a recently evolved prepeptide uniquely present in Hominidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The parvulin-type peptidyl prolyl <it>cis/trans </it>isomerase Par14 is highly conserved in all metazoans. The recently identified parvulin Par17 contains an additional N-terminal domain whose occurrence and function was the focus of the present study.</p> <p>Results</p> <p>Based on the observation that the human genome encodes Par17, but bovine and rodent genomes do not, Par17 exon sequences from 10 different primate species were cloned and sequenced. Par17 is encoded in the genomes of Hominidae species including humans, but is absent from other mammalian species. In contrast to Par14, endogenous Par17 was found in mitochondrial and membrane fractions of human cell lysates. Fluorescence of EGFP fusions of Par17, but not Par14, co-localized with mitochondrial staining. Par14 and Par17 associated with isolated human, rat and yeast mitochondria at low salt concentrations, but only the Par17 mitochondrial association was resistant to higher salt concentrations. Par17 was imported into mitochondria in a time and membrane potential-dependent manner, where it reached the mitochondrial matrix. Moreover, Par17 was shown to bind to double-stranded DNA under physiological salt conditions.</p> <p>Conclusion</p> <p>Taken together, the DNA binding parvulin Par17 is targeted to the mitochondrial matrix by the most recently evolved mitochondrial prepeptide known to date, thus adding a novel protein constituent to the mitochondrial proteome of Hominidae.</p

    Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes

    Get PDF
    Six genes in the 1.5 MB region of chromosome 22 deleted in DiGeorge/22q11 Deletion Syndrome—Mrpl40, Prodh, Slc25a1, Txnrd2, T10, and Zdhhc8—encode mitochondrial proteins. All six genes are expressed in the brain, and maximal expression coincides with peak forebrain synaptogenesis shortly after birth. Furthermore, their protein products are associated with brain mitochondria, including those in synaptic terminals. Among the six, only Zddhc8 influences mitochondria-regulated apoptosis when overexpressed, and appears to interact biochemically with established mitochondrial proteins. Zdhhc8 has an apparent interaction with Uqcrc1, a component of mitochondrial complex III. The two proteins are coincidently expressed in presynaptic processes; however, Zdhhc8 is more frequently seen in glutamatergic terminals. 22q11 deletion may alter metabolic properties of cortical mitochondria during early post-natal life, since expression complex III components, including Uqcrc1, is significantly increased at birth in a mouse model of 22q11 deletion, and declines to normal values in adulthood. Our results suggest that altered dosage of one, or several 22q11 mitochondrial genes, particularly during early postnatal cortical development, may disrupt neuronal metabolism or synaptic signaling

    Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task?

    Get PDF
    Mitochondrial-DNA diseases have no effective treatments. Allotopic expression—synthesis of a wild-type version of the mutated protein in the nuclear-cytosolic compartment and its importation into mitochondria—has been proposed as a gene-therapy approach. Allotopic expression has been successfully demonstrated in yeast, but in mammalian mitochondria results are contradictory. The evidence available is based on partial phenotype rescue, not on the incorporation of a functional protein into mitochondria. Here, we show that reliance on partial rescue alone can lead to a false conclusion of successful allotopic expression. We recoded mitochondrial mt-Nd6 to the universal genetic code, and added the N-terminal mitochondrial-targeting sequence of cytochrome c oxidase VIII (C8) and the HA epitope (C8Nd6HA). The protein apparently co-localized with mitochondria, but a significant part of it seemed to be located outside mitochondria. Complex I activity and assembly was restored, suggesting successful allotopic expression. However, careful examination of transfected cells showed that the allotopically-expressed protein was not internalized in mitochondria and that the selected clones were in fact revertants for the mt-Nd6 mutation. These findings demonstrate the need for extreme caution in the interpretation of functional rescue experiments and for clear-cut controls to demonstrate true rescue of mitochondrial function by allotopic expression

    Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Get PDF
    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome
    corecore