92 research outputs found

    Uplink Sounding Reference Signal Coordination to Combat Pilot Contamination in 5G Massive MIMO

    Full text link
    To guarantee the success of massive multiple-input multiple-output (MIMO), one of the main challenges to solve is the efficient management of pilot contamination. Allocation of fully orthogonal pilot sequences across the network would provide a solution to the problem, but the associated overhead would make this approach infeasible in practical systems. Ongoing fifth-generation (5G) standardisation activities are debating the amount of resources to be dedicated to the transmission of pilot sequences, focussing on uplink sounding reference signals (UL SRSs) design. In this paper, we extensively evaluate the performance of various UL SRS allocation strategies in practical deployments, shedding light on their strengths and weaknesses. Furthermore, we introduce a novel UL SRS fractional reuse (FR) scheme, denoted neighbour-aware FR (FR-NA). The proposed FR-NA generalizes the fixed reuse paradigm, and entails a tradeoff between i) aggressively sharing some UL SRS resources, and ii) protecting other UL SRS resources with the aim of relieving neighbouring BSs from pilot contamination. Said features result in a cell throughput improvement over both fixed reuse and state-of-the-art FR based on a cell-centric perspective

    Millimeter Wave Systems for Wireless Cellular Communications

    Full text link
    This thesis considers channel estimation and multiuser (MU) data transmission for massive MIMO systems with fully digital/hybrid structures in mmWave channels. It contains three main contributions. In this thesis, we first propose a tone-based linear search algorithm to facilitate the estimation of angle-of-arrivals of the strongest components as well as scattering components of the users at the base station (BS) with fully digital structure. Our results show that the proposed maximum-ratio transmission (MRT) based on the strongest components can achieve a higher data rate than that of the conventional MRT, under the same mean squared errors (MSE). Second, we develop a low-complexity channel estimation and beamformer/precoder design scheme for hybrid mmWave systems. In addition, the proposed scheme applies to both non-sparse and sparse mmWave channel environments. We then leverage the proposed scheme to investigate the downlink achievable rate performance. The results show that the proposed scheme obtains a considerable achievable rate of fully digital systems. Taking into account the effect of various types of errors, we investigate the achievable rate performance degradation of the considered scheme. Third, we extend our proposed scheme to a multi-cell MU mmWave MIMO network. We derive the closed-form approximation of the normalized MSE of channel estimation under pilot contamination over Rician fading channels. Furthermore, we derive a tight closed-form approximation and the scaling law of the average achievable rate. Our results unveil that channel estimation errors, the intra-cell interference, and the inter-cell interference caused by pilot contamination over Rician fading channels can be efficiently mitigated by simply increasing the number of antennas equipped at the desired BS.Comment: Thesi

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Orthogonal Constant-Amplitude Sequence Families for System Parameter Identification in Spectrally Compact OFDM

    Full text link
    In rectangularly-pulsed orthogonal frequency division multiplexing (OFDM) systems, constant-amplitude (CA) sequences are desirable to construct preamble/pilot waveforms to facilitate system parameter identification (SPI). Orthogonal CA sequences are generally preferred in various SPI applications like random-access channel identification. However, the number of conventional orthogonal CA sequences (e.g., Zadoff-Chu sequences) that can be adopted in cellular communication without causing sequence identification ambiguity is insufficient. Such insufficiency causes heavy performance degradation for SPI requiring a large number of identification sequences. Moreover, rectangularly-pulsed OFDM preamble/pilot waveforms carrying conventional CA sequences suffer from large power spectral sidelobes and thus exhibit low spectral compactness. This paper is thus motivated to develop several order-I CA sequence families which contain more orthogonal CA sequences while endowing the corresponding OFDM preamble/pilot waveforms with fast-decaying spectral sidelobes. Since more orthogonal sequences are provided, the developed order-I CA sequence families can enhance the performance characteristics in SPI requiring a large number of identification sequences over multipath channels exhibiting short-delay channel profiles, while composing spectrally compact OFDM preamble/pilot waveforms.Comment: 15 pages, 4 figure

    Enabling Ultra Reliable Wireless Communications for Factory Automation with Distributed MIMO

    Full text link
    Factory automation is one of the most challenging use cases for 5G-and-beyond mobile networks due to strict latency, availability and reliability constraints. In this work, an indoor factory scenario is considered, and distributed multiple-input multiple-output (MIMO) schemes are investigated in order to enable reliable communication to the actuators (ACs) active in the factory. Different levels of coordination among the access points serving the ACs and several beamforming schemes are considered and analyzed. To enforce system reliability, a max-min power allocation (MPA) algorithm is proposed, aimed at improving the signal to interference plus noise ratio (SINR) of the ACs with the worst channel conditions. Extensive system simulations are performed in a realistic scenario, which includes a new path-loss model based on recent measurements in factory scenarios, and, also, the presence of non-Gaussian impulsive noise. Numerical results show that distributed MIMO schemes with zero-forcing (ZF) beamforming and MPA have the potential of providing SINR gains in the order of tens of dB with respect to a centralized MIMO deployment, as well as that the impulsive noise can strongly degrade the system performance and thus requires specific detection and mitigation techniques.Comment: Accepted at the IEEE Vehicular Technology Conference (VTC-Fall), Honolulu (HI), Sep. 201
    • …
    corecore