727 research outputs found

    Convolutional Radio Modulation Recognition Networks

    Full text link
    We study the adaptation of convolutional neural networks to the complex temporal radio signal domain. We compare the efficacy of radio modulation classification using naively learned features against using expert features which are widely used in the field today and we show significant performance improvements. We show that blind temporal learning on large and densely encoded time series using deep convolutional neural networks is viable and a strong candidate approach for this task especially at low signal to noise ratio

    Detection and fine-grained classification of cyberbullying events

    Get PDF
    In the current era of online interactions, both positive and negative experiences are abundant on the Web. As in real life, negative experiences can have a serious impact on youngsters. Recent studies have reported cybervictimization rates among teenagers that vary between 20% and 40%. In this paper, we focus on cyberbullying as a particular form of cybervictimization and explore its automatic detection and fine-grained classification. Data containing cyberbullying was collected from the social networking site Ask.fm. We developed and applied a new scheme for cyberbullying annotation, which describes the presence and severity of cyberbullying, a post author's role (harasser, victim or bystander) and a number of fine-grained categories related to cyberbullying, such as insults and threats. We present experimental results on the automatic detection of cyberbullying and explore the feasibility of detecting the more fine-grained cyberbullying categories in online posts. For the first task, an F-score of 55.39% is obtained. We observe that the detection of the fine-grained categories (e.g. threats) is more challenging, presumably due to data sparsity, and because they are often expressed in a subtle and implicit way

    Exploring the Relationship between Architecture and Adversarially Robust Generalization

    Full text link
    Adversarial training has been demonstrated to be one of the most effective remedies for defending adversarial examples, yet it often suffers from the huge robustness generalization gap on unseen testing adversaries, deemed as the adversarially robust generalization problem. Despite the preliminary understandings devoted to adversarially robust generalization, little is known from the architectural perspective. To bridge the gap, this paper for the first time systematically investigated the relationship between adversarially robust generalization and architectural design. Inparticular, we comprehensively evaluated 20 most representative adversarially trained architectures on ImageNette and CIFAR-10 datasets towards multiple `p-norm adversarial attacks. Based on the extensive experiments, we found that, under aligned settings, Vision Transformers (e.g., PVT, CoAtNet) often yield better adversarially robust generalization while CNNs tend to overfit on specific attacks and fail to generalize on multiple adversaries. To better understand the nature behind it, we conduct theoretical analysis via the lens of Rademacher complexity. We revealed the fact that the higher weight sparsity contributes significantly towards the better adversarially robust generalization of Transformers, which can be often achieved by the specially-designed attention blocks. We hope our paper could help to better understand the mechanism for designing robust DNNs. Our model weights can be found at http://robust.art

    Translating away Translationese without Parallel Data

    Full text link
    Translated texts exhibit systematic linguistic differences compared to original texts in the same language, and these differences are referred to as translationese. Translationese has effects on various cross-lingual natural language processing tasks, potentially leading to biased results. In this paper, we explore a novel approach to reduce translationese in translated texts: translation-based style transfer. As there are no parallel human-translated and original data in the same language, we use a self-supervised approach that can learn from comparable (rather than parallel) mono-lingual original and translated data. However, even this self-supervised approach requires some parallel data for validation. We show how we can eliminate the need for parallel validation data by combining the self-supervised loss with an unsupervised loss. This unsupervised loss leverages the original language model loss over the style-transferred output and a semantic similarity loss between the input and style-transferred output. We evaluate our approach in terms of original vs. translationese binary classification in addition to measuring content preservation and target-style fluency. The results show that our approach is able to reduce translationese classifier accuracy to a level of a random classifier after style transfer while adequately preserving the content and fluency in the target original style.Comment: Accepted at EMNLP 2023, Main Conferenc
    • …
    corecore