7 research outputs found

    Accurate Reconstruction and Suppression for Azimuth Ambiguities in Spaceborne Stripmap SAR Images

    Get PDF
    In this letter, an accurate mathematical model for azimuth ambiguity in stripmap synthetic aperture radar (SAR) images is first constructed, with an azimuth ambiguity factor (AAF) defined as the residual amplitude and phase terms of ambiguities. Next, a novel framework for reconstructing and suppressing azimuth ambiguity is proposed based on the analysis of the AAF. In this framework, azimuth ambiguities are accurately reconstructed by applying reconstruction filters in the range Doppler and 2-D frequency domain, and then, the reconstructed signal is used for suppressing azimuth ambiguities. Moreover, the proposed framework does not depend on the statistical characteristics of a SAR image and is capable of reducing the space-variant ambiguities. As verified by both simulated data and real TerraSAR-X data, the proposed method is capable of suppressing azimuth ambiguities in SAR images

    Space-based Global Maritime Surveillance. Part I: Satellite Technologies

    Full text link
    Maritime surveillance (MS) is crucial for search and rescue operations, fishery monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since the early days of seafaring, MS has been a critical task for providing security in human coexistence. Several generations of sensors providing detailed maritime information have become available for large offshore areas in real time: maritime radar sensors in the 1950s and the automatic identification system (AIS) in the 1990s among them. However, ground-based maritime radars and AIS data do not always provide a comprehensive and seamless coverage of the entire maritime space. Therefore, the exploitation of space-based sensor technologies installed on satellites orbiting around the Earth, such as satellite AIS data, synthetic aperture radar, optical sensors, and global navigation satellite systems reflectometry, becomes crucial for MS and to complement the existing terrestrial technologies. In the first part of this work, we provide an overview of the main available space-based sensors technologies and present the advantages and limitations of each technology in the scope of MS. The second part, related to artificial intelligence, signal processing and data fusion techniques, is provided in a companion paper, titled: "Space-based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques" [1].Comment: This paper has been submitted to IEEE Aerospace and Electronic Systems Magazin

    Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs

    Get PDF
    This thesis is an outcome of the project “Flood and damage assessment using very high resolution SAR data” (SAR-HQ), which is embedded in the interdisciplinary oriented RIMAX (Risk Management of Extreme Flood Events) programme, funded by the Federal Ministry of Education and Research (BMBF). It comprises the results of three scientific papers on automatic near real-time flood detection in high resolution X-band synthetic aperture radar (SAR) satellite data for operational rapid mapping activities in terms of disaster and crisis-management support. Flood situations seem to become more frequent and destructive in many regions of the world. A rising awareness of the availability of satellite based cartographic information has led to an increase in requests to corresponding mapping services to support civil-protection and relief organizations with disaster-related mapping and analysis activities. Due to the rising number of satellite systems with high revisit frequencies, a strengthened pool of SAR data is available during operational flood mapping activities. This offers the possibility to observe the whole extent of even large-scale flood events and their spatio-temporal evolution, but also calls for computationally efficient and automatic flood detection methods, which should drastically reduce the user input required by an active image interpreter. This thesis provides solutions for the near real-time derivation of detailed flood parameters such as flood extent, flood-related backscatter changes as well as flood classification probabilities from the new generation of high resolution X-band SAR satellite imagery in a completely unsupervised way. These data are, in comparison to images from conventional medium-resolution SAR sensors, characterized by an increased intra-class and decreased inter-class variability due to the reduced mixed pixel phenomenon. This problem is addressed by utilizing multi-contextual models on irregular hierarchical graphs, which consider that semantic image information is less represented in single pixels but in homogeneous image objects and their mutual relation. A hybrid Markov random field (MRF) model is developed, which integrates scale-dependent as well as spatio-temporal contextual information into the classification process by combining hierarchical causal Markov image modeling on automatically generated irregular hierarchical graphs with noncausal Markov modeling related to planar MRFs. This model is initialized in an unsupervised manner by an automatic tile-based thresholding approach, which solves the flood detection problem in large-size SAR data with small a priori class probabilities by statistical parameterization of local bi-modal class-conditional density functions in a time efficient manner. Experiments performed on TerraSAR-X StripMap data of Southwest England and ScanSAR data of north-eastern Namibia during large-scale flooding show the effectiveness of the proposed methods in terms of classification accuracy, computational performance, and transferability. It is further demonstrated that hierarchical causal Markov models such as hierarchical maximum a posteriori (HMAP) and hierarchical marginal posterior mode (HMPM) estimation can be effectively used for modeling the inter-spatial context of X-band SAR data in terms of flood and change detection purposes. Although the HMPM estimator is computationally more demanding than the HMAP estimator, it is found to be more suitable in terms of classification accuracy. Further, it offers the possibility to compute marginal posterior entropy-based confidence maps, which are used for the generation of flood possibility maps that express that the uncertainty in labeling of each image element. The supplementary integration of intra-spatial and, optionally, temporal contextual information into the Markov model results in a reduction of classification errors. It is observed that the application of the hybrid multi-contextual Markov model on irregular graphs is able to enhance classification results in comparison to modeling on regular structures of quadtrees, which is the hierarchical representation of images usually used in MRF-based image analysis. X-band SAR systems are generally not suited for detecting flooding under dense vegetation canopies such as forests due to the low capability of the X-band signal to penetrate into media. Within this thesis a method is proposed for the automatic derivation of flood areas beneath shrubs and grasses from TerraSAR-X data. Furthermore, an approach is developed, which combines high resolution topographic information with multi-scale image segmentation to enhance the mapping accuracy in areas consisting of flooded vegetation and anthropogenic objects as well as to remove non-water look-alike areas

    Spatial and temporal statistics of SAR and InSAR observations for providing indicators of tropical forest structural changes due to forest disturbance

    Get PDF
    Tropical forests are extremely important ecosystems which play a substantial role in the global carbon budget and are increasingly dominated by anthropogenic disturbance through deforestation and forest degradation, contributing to emissions of greenhouse gases to the atmosphere. There is an urgent need for forest monitoring over extensive and inaccessible tropical forest which can be best accomplished using spaceborne satellite data. Currently, two key processes are extremely challenging to monitor: forest degradation and post-disturbance re-growth. The thesis work focuses on these key processes by considering change indicators derived from radar remote sensing signal that arise from changes in forest structure. The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, which can provide forest structural information while simultaneously being able to collect data independently of cloud cover, haze and daylight conditions which is a great advantage over the tropics. The main principle of the work is that a connection can be established between the forest structure distribution in space and signal variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest structure spatial characteristics and changes are used to map forest condition (intact or degraded) or disturbance. The innovative approach focuses on looking for textural patterns (and their changes) in radar observations, then connecting these patterns to the forest state through supporting evidence from expert knowledge and auxiliary remote sensing observations (e.g. high resolution optical, aerial photography or LiDAR). These patterns are descriptors of the forest structural characteristics in a statistical sense, but are not estimates of physical properties, such as above-ground biomass or canopy height. The thesis tests and develops methods using novel remote sensing technology (e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods (wavelet-based space-scale analysis). The work is developed on an experimental basis and articulated in three test cases, each addressing a particular observational setting, analytical method and thematic context. The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis concludes that intact forest and degraded forest (arising from selective logging) are significantly different based on canopy structural properties when measured by wavelet based space-scale analysis. In this case, C-band data are more effective than longer wavelength L-band data. Such a result could be explained by the lower wave penetration into the forest volume at shorter wavelength, with the mechanism driving the differences between the two forest states arising from upper canopy heterogeneity. In the second paper, wavelet based space-scale analysis is also used to provide information on upper canopy structure. A DSM derived from TanDEM-X acquired in 2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, Indonesian Borneo) which was affected by the 1997/1998 El Niño Southern Oscillation (ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR DSMs between primary and secondary forest was in some cases comparable to results achieved by high resolution LiDAR data. The third test case introduces a temporal component, with change detection aimed at detecting forest structure changes provided by differencing TanDEM-X DSMs acquired at two dates separated by one year (2012-2013) in the Republic of Congo. The method enables cancelling out the component due to terrain elevation which is constant between the two dates, and therefore the signal related to the forest structure change is provided. Object-based change detection successfully mapped a gradient of forest volume loss (deforestation/forest degradation) and forest volume gain (post-disturbance re-growth). Results indicate that the combination of InSAR observations and wavelet based space-scale analysis is the most promising way to measure differences in forest structure arising from forest fires. Equally, the process of forest degradation due to shifting cultivation and post-disturbance re-growth can be best detected using multiple InSAR observations. From the experiments conducted, single-pass InSAR appears to be the most promising remote sensing technology to detect forest structure changes, as it provides three-dimensional information and with no temporal decorrelation. This type of information is not available in optical remote sensing and only partially available (through a 2D mapping) in SAR backscatter. It is advised that future research or operational endeavours aimed at mapping and monitoring forest degradation/regrowth should take advantage of the only currently available high resolution spaceborne single-pass InSAR mission (TanDEM-X). Moreover, the results contribute to increase knowledge related to the role of SAR and InSAR for monitoring degraded forest and tracking the process of forest degradation which is a priority but still highly challenging to detect. In the future the techniques developed in the thesis work could be used to some extent to support REDD+ initiatives

    Puistute takseertunnuste hindamine aerolidari mÔÔtmisandmete pÔhjal hemiboreaalsetes metsades

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Forestry.Forest management and planning requires up-to-date data, which commonly is acquired using field experts and ground measurements. Nowadays, more and more of data about forest stands is measured using remotely sensing methods. Most common methods include aerial photography and laser scanning from airplanes, also spectral measurements from satellites or even drone images and applications. This doctoral thesis focuses on developing applications and methods for utilising the airborne laser scanning (ALS) data that is freely available for the whole Estonia. The ALS measurements are carried out by the Estonian Land Board on a routine basis twice a year – in spring and summer. The first variable that was studied in this thesis was forest height. Based on the thesis, the most reliable method for forest height assessment was using the ALS point-cloud 80th height percentile (HP80). The small circular plot (radius of 15
30 m) and stand based studies showed high correlations with the field-measured forest heights and with great confidence it can be said, that ALS-based forest height estimations are close or even with higher accuracy, than field inspected. The second studied variable was standing wood volume. The ALS-based methods and models that were developed throughout this thesis used the idea, that standing wood volume is based on forest height and density. For this the HP80 and a threshold-based point count ratio was used (canopy cover - CC). ALS-based CC (CCALS) estimates were studied and compared with digital hemispherical photo based measurements. The results showed similar errors as were shown in other similar studies, with around 10-15% root mean square error (RMSE). The strongest correlation was shown using all echoes above a 1.3 metre threshold. Combining the CCALS and HP80 showed standing wood volume estimates with a similar error as we would receive from field measurements (<20%). The freely available multitemporal ALS data showed promising results for forest height growth monitoring and detecting small-scale disturbances. CCALS was shown to have strong predictive value, when compared with a four year difference in thinned and unthinned stands. The nation-wide ALS data can also be combined with forest height predictions from satellites, providing a faster update compared to the ALS data. Promising results were shown using the interferometric synthetic aperture radar (InSAR). Stand species maps generated using self-learning algorithms and satellite based spectral data can be used for developing species specific models of standing wood volume prediction. By combining these different datasets we can construct a nation-wide forest resource to help make better decisions for forest management and targeting fieldwork.Metsades majandamisotsuste langetamiseks ja metsamajanduslike tööde planeerimiseks on metsaomanikel vaja andmeid. HarjumuspĂ€raselt on andmete kogumiseks tehtud metsas maapealseid mÔÔtmisi. Viimastel aastakĂŒmnetel on metsade inventeerimiseks ĂŒha enam aga kasutatud mittekontaktseid mÔÔtmisi - lennukitelt tehtavad aerofotosid, laserskaneerimist, satelliitidelt tehtavaid kiirgusmÔÔtmisi vĂ”i viimastel aastatel ka droonidelt tehtud pilte. Antud doktoritöö on vĂ”tnud fookusesse aerolaserskaneerimise (ALS) andmete pĂ”hjal Eesti metsadesse sobilike rakenduste vĂ€ljatöötamise. ALS mÔÔtmisi teeb Eesti Maa-amet rutiinsete lendude kĂ€igus kaks korda aastas, nii kevadel kui ka suvel. Aastast 2008 alustatud mÔÔtmiste tulemusel on Eesti ĂŒks vĂ€heseid riike maailmas, kus on vabalt kasutada mitmekordselt kogu riiki kattev ALS andmestik. Doktoritöö tulemusel töötati vĂ€lja metsa kĂ”rguse hindamiseks sobilikud meetodid, kasutades selleks punktipilvede kĂ”rgusprotsentiile. Tugevamaid seoseid metsas proovitĂŒkkidel mÔÔdetud kĂ”rgustega nĂ€itas punktipilve 80-protsentiil (HP80) ja uuringute pĂ”hjal vĂ”ib vĂ€ita, et metsa kĂ”rguse mÀÀramine suvistelt aerolidari andmetelt on ligilĂ€hedane tĂ€psustele, mida saadakse metsas kohapeal mÔÔtes. Teine oluline tunnus, mida metsade majandamise planeerimisel silmas peetakse, on kasvava metsa tagavara. Teadustöö pĂ”hjal töötati vĂ€lja mudelite kujud ja metoodika, mille abil prognoositud tagavara oli sarnase veapiiriga, mis on lubatud metsas hinnanguid tegevatele taksaatoritele (<20%). VĂ€ljatöötatud ALS-pĂ”hine mudeli kuju jĂ€rgib loogikat, et metsa tagavara on otseselt seotud mÔÔdetud kĂ”rguse ja metsa tihedusega. Tihenduse hindamiseks aerolidari andmetelt kasutatakse nivoopĂ”hist punktide suhtearvu ehk nn katvushinnangut (CCALS). Katvushinnangu tĂ€psuse valideerimiseks ja tihedas metsas sobiva prognoosimeetodi vĂ€ljatöötamiseks tehti vĂ€limÔÔtmisi kasutades poolsfÀÀrikaameraid. PoolsfÀÀripiltide pĂ”hjal tehtud valideerimise tulemused andsid sarnaseid veahinnanguid, mida on ka varasemates teadusuuringutes esitletud (RMSE = 10
15%). Kahe sarnasest fenoloogilisest perioodist ALS andmestiku lahutamisel uuriti ka muutuste tuvastamise vĂ”imalikkust. Uuringud andsid paljulubavaid tulemusi metsade kĂ”rguskasvu hindamiseks ja CCALS osutus ka oluliseks tunnuseks vĂ€iksemate hĂ€iringute, nagu nĂ€iteks harvendusraie, tuvastamiseks. Kogu riiki katva ALS andmestiku kombineerimisel erinevate satelliitandmetega vĂ”i nĂ€iteks spektraalsete mÔÔtmiste pĂ”hjal tehtud puistu liigiliste koosseisu kaartidega on vĂ”imalik antud töös vĂ€lja pakutud meetodite abil anda igal aastal kogu Eesti metsaressursside ĂŒlevaade. Samuti on vĂ”imalik koostada vaid kaugseirevahendeid ja proovitĂŒkkidel lĂ€hendatud mudeleid kasutades eraldiste pĂ”hised takseerkirjeldused, mida siis taksaatorid saavad nĂ€iteks kasutada oma vĂ€litööde kavandamisel.  Publication of this thesis is supported by the Estonian University of Life Sciences

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications
    corecore