1,792 research outputs found

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A Novel Approach to Minimizing the Risks of Soft Errors in Mobile and Ubiquitous Systems

    Get PDF
    A novel approach to minimizing the risks of soft errors at modelling level of mobile and ubiquitous systems is outlined. From a pure dependability viewpoint, critical components, whose failure is likely to impact on system functionality, attract more attention of protection/prevention mechanisms (against soft errors) than others do. Tolerating soft errors can be much improved if critical components can be identified at an early design phase and measures are taken to lower their criticalities at that stage. This improvement is achieved by presenting a criticality ranking (among the components) formed by combining a prediction of soft errors, consequences of them, and a propagation of failures at system modelling phase; and pointing out the ways to apply changes in the model to minimize the risks of degradation of desired functionalities. Case study results are given to illustrate and validate the approach

    VISTA:an inclusive insider threat taxonomy, with mitigation strategies

    Get PDF
    Insiders have the potential to do a great deal of damage, given their legitimate access to organisational assets and the trust they enjoy. Organisations can only mitigate insider threats if they understand what the different kinds of insider threats are, and what tailored measures can be used to mitigate the threat posed by each of them. Here, we derive VISTA (inclusiVe InSider Threat tAxonomy) based on an extensive literature review and a survey with C-suite executives to ensure that the VISTA taxonomy is not only scientifically grounded, but also meets the needs of organisations and their executives. To this end, we map each VISTA category of insider threat to tailored mitigations that can be deployed to reduce the threat

    A Design Approach for Soft Errors Protection in Real-Time Systems

    Get PDF
    This paper proposes the use of metrics to refine system design for soft errors protection in system on chip architectures. Specifically this research shows the use of metrics in design space exploration that highlight where in the structure of the model and at what point in the behaviour, protection is needed against soft errors. As these metrics improve the ability of the system to provide functionality, they are referred to here as reliability metrics. Previous approaches to prevent soft errors focused on recovery after detection. Almost no research has been directed towards preventive measures. But in real-time systems, deadlines are performance requirements that absolutely must be met and a missed deadline constitutes an erroneous action and a possible system failure. This paper focuses on a preventive approach as a solution rather than recovery after detection. The intention of this research is to prevent serious loss of system functionality or system failure though it may not be able to eliminate the impact of soft errors completely
    corecore