61 research outputs found

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Architecting Secure Processor Caches

    Get PDF
    Caches in modern processors enable fast access to data and help alleviate the performance overheads from slow access to DRAM main-memory. While sharing of cache resources between multiple cores, especially the last-level cache, boosts cache utilization and improves system performance, it has been shown to cause serious security vulnerabilities in the form cache side-channel attacks. Different cores of a system can simultaneously run sensitive and malicious applications which can contend for the shared cache space. As a result, accesses of a sensitive application can influence the cache utilization and the execution time of a malicious application, introducing a side-channel of information leakage. Such cache interactions between a sensitive victim and a malicious spy have been shown to allow leakage of encryption keys, user-sensitive data such as files or browsing histories, confidential intellectual property such as machine-learning models, etc. Similarly, such cache interactions can also be used as a channel for covert communication be- tween two colluding malicious applications, when direct communication via network ports is disabled. The focus of this thesis is to develop principled and practical mitigation for such cache side channel and covert channel attacks. To develop principled defenses, it is necessary to develop a deep understanding of attacks. So, first, this thesis investigates the capabilities of attackers and in the process develops a new cache covert channel attack called Streamline, which is considerably faster than current state-of-the-art attacks, with fewer requirements. With an asynchronous and flushless information transmission protocol, Streamline reaches bit-rates of more than 1 MB/s while being applicable to all ISAs and micro-architectures. This demonstrates the need for effective defenses against cache attacks across all platforms. Second, this thesis develops new principled and practical defenses utilizing cache lo- cation randomization. Randomized caches obfuscate the mappings of addresses to cache locations to prevent malicious programs from inferring contention patterns on shared last- level caches with victim programs. However, successive defenses relying on randomization have been broken by recent attacks. To end the arms race in randomized caches, this thesis proposes a principled defense, MIRAGE, which provides the security of a fully-associative design in a practical manner for randomized caches. This eliminates set-conflicts and set- conflict based cache attacks in a future-proof manner. Third, this thesis explores cache-partitioning based defenses to eliminate all potential cache side channels through shared last-level caches. Such defenses map mistrusting applications to isolated cache partitions, thus preventing any information leakage across applications through cache state changes. However, existing solutions are not scalable or do not allow flexible usage of DRAM and cache resources. To address these problems, this thesis provides a scalable and flexible cache-isolation framework, Bespoke Cache Enclaves, supporting hundreds of partitions independent of memory utilization. This work enables practical adoption of cache-isolation defenses against cache side-channel attacks. Lastly, this thesis develops techniques to secure caches against exploitation in transient execution attacks. Attacks like Spectre and Meltdown exploit processor speculation to illegally access secrets and leak these out through cache covert channels, i.e., making transient changes to processor caches. This thesis enables CleanupSpec, one of the first defenses against such attacks, which reverses speculative modifications to caches on mis- speculations, to limit such transient information leakage via caches. This solution prevents caches from being exploited by attacks like Spectre with minimal overheads. Overall, this thesis enables several techniques that provide principled yet practical security for processor caches against side channels and covert channels. These techniques can potentially enable the wide adoption of secure cache designs in future processors and support efforts to enable confidential computing in systems.Ph.D

    Power-constrained aware and latency-aware microarchitectural optimizations in many-core processors

    Get PDF
    As the transistor budgets outpace the power envelope (the power-wall issue), new architectural and microarchitectural techniques are needed to improve, or at least maintain, the power efficiency of next-generation processors. Run-time adaptation, including core, cache and DVFS adaptations, has recently emerged as a promising area to keep the pace for acceptable power efficiency. However, none of the adaptation techniques proposed so far is able to provide good results when we consider the stringent power budgets that will be common in the next decades, so new techniques that attack the problem from several fronts using different specialized mechanisms are necessary. The combination of different power management mechanisms, however, bring extra levels of complexity, since other factors such as workload behavior and run-time conditions must also be considered to properly allocate power among cores and threads. To address the power issue, this thesis first proposes Chrysso, an integrated and scalable model-driven power management that quickly selects the best combination of adaptation methods out of different core and uncore micro-architecture adaptations, per-core DVFS, or any combination thereof. Chrysso can quickly search the adaptation space by making performance/power projections to identify Pareto-optimal configurations, effectively pruning the search space. Chrysso achieves 1.9x better chip performance over core-level gating for multi-programmed workloads, and 1.5x higher performance for multi-threaded workloads. Most existing power management schemes use a centralized approach to regulate power dissipation. Unfortunately, the complexity and overhead of centralized power management increases significantly with core count rendering it in-viable at fine-grain time slices. The work leverages a two-tier hierarchical power manager. This solution is highly scalable with low overhead on a tiled many-core architecture with shared LLC and per-tile DVFS at fine-grain time slices. The global power is first distributed across tiles using GPM and then within a tile (in parallel across all tiles). Additionally, this work also proposes DVFS and cache-aware thread migration (DCTM) to ensure optimum per-tile co-scheduling of compatible threads at runtime over the two-tier hierarchical power manager. DCTM outperforms existing solutions by up to 12% on adaptive many-core tile processor. With the advancements in the core micro-architectural techniques and technology scaling, the performance gap between the computational component and memory component is increasing significantly (the memory-wall issue). To bridge this gap, the architecture community is pushing forward towards multi-core architecture with on-die near-memory DRAM cache memory (faster than conventional DRAM). Gigascale DRAM Caches poses a problem of how to efficiently manage the tags. The Tags-in-DRAM designs aims at efficiently co-locate tags with data, but it still suffer from high latency especially in multi-way associativity. The thesis finally proposes Tag Cache mechanism, an on-chip distributed tag caching mechanism with limited space and latency overhead to bypass the tag read operation in multi-way DRAM Caches, thereby reducing hit latency. Each Tag Cache, stored in L2, stores tag information of the most recently used DRAM Cache ways. The Tag Cache is able to exploit temporal locality of the DRAM Cache, thereby contributing to on average 46% of the DRAM Cache hits.A mesura que el consum dels transistors supera el nivell de potència desitjable es necessiten noves tècniques arquitectòniques i microarquitectòniques per millorar, o almenys mantenir, l'eficiència energètica dels processadors de les pròximes generacions. L'adaptació en temps d'execució, tant de nuclis com de les cachés, així com també adaptacions DVFS són idees que han sorgit recentment que fan preveure que sigui un àrea prometedora per mantenir un ritme d'eficiència energètica acceptable. Tanmateix, cap de les tècniques d'adaptació proposades fins ara és capaç d'oferir bons resultats si tenim en compte les restriccions estrictes de potència que seran comuns a les pròximes dècades. És convenient definir noves tècniques que ataquin el problema des de diversos fronts utilitzant diferents mecanismes especialitzats. La combinació de diferents mecanismes de gestió d'energia porta aparellada nivells addicionals de complexitat, ja que altres factors com ara el comportament de la càrrega de treball així com condicions específiques de temps d'execució també han de ser considerats per assignar adequadament la potència entre els nuclis del sistema computador. Per tractar el tema de la potència, aquesta tesi proposa en primer lloc Chrysso, una administració d'energia integrada i escalable que selecciona ràpidament la millor combinació entre diferents adaptacions microarquitectòniques. Chrysso pot buscar ràpidament l'adaptació adequada al fer projeccions òptimes de rendiment i potència basades en configuracions de Pareto, permetent així reduir de manera efectiva l'espai de cerca. Chrysso arriba a un rendiment de 1,9 sobre tècniques convencionals d'inhibició de portes amb una càrrega d'aplicacions seqüencials; i un rendiment de 1,5 quan les aplicacions corresponen a programes parla·lels. La majoria dels sistemes de gestió d'energia existents utilitzen un enfocament centralitzat per regular la dissipació d'energia. Malauradament, la complexitat i el temps d'administració s'incrementen significativament amb una gran quantitat de nuclis. En aquest treball es defineix un gestor jeràrquic de potència basat en dos nivells. Aquesta solució és altament escalable amb baix cost operatiu en una arquitectura de múltiples nuclis integrats en clústers, amb memòria caché de darrer nivell compartida a nivell de cluster, i DVFS establert en intervals de temps de gra fi a nivell de clúster. La potència global es distribueix en primer lloc a través dels clústers utilitzant GPM i després es distribueix dins un clúster (en paral·lel si es consideren tots els clústers). A més, aquest treball també proposa DVFS i migració de fils conscient de la memòria caché (DCTM) que garanteix una òptima distribució de tasques entre els nuclis. DCTM supera les solucions existents fins a un 12%. Amb els avenços en la tecnologia i les tècniques de micro-arquitectura de nuclis, la diferència de rendiment entre el component computacional i la memòria està augmentant significativament. Per omplir aquest buit, s'està avançant cap a arquitectures de múltiples nuclis amb memòries caché integrades basades en DRAM. Aquestes memòries caché DRAM a gran escala plantegen el problema de com gestionar de forma eficaç les etiquetes. Els dissenys de cachés amb dades i etiquetes juntes són un primer pas, però encara pateixen per tenir una alta latència, especialment en cachés amb un grau alt d'associativitat. En aquesta tesi es proposa l'estudi d'una tècnica anomenada Tag Cache, un mecanisme distribuït d'emmagatzematge d'etiquetes, que redueix la latència de les operacions de lectura d'etiquetes en les memòries caché DRAM. Cada Tag Cache, que resideix a L2, emmagatzema la informació de les vies que s'han accedit recentment de les memòries caché DRAM. D'aquesta manera es pot aprofitar la localitat temporal d'una caché DRAM, fet que contribueix en promig en un 46% dels encerts en les caché DRAM

    Cache Attacks and Defenses

    Get PDF
    In the digital age, as our daily lives depend heavily on interconnected computing devices, information security has become a crucial concern. The continuous exchange of data between devices over the Internet exposes our information vulnerable to potential security breaches. Yet, even with measures in place to protect devices, computing equipment inadvertently leaks information through side-channels, which emerge as byproducts of computational activities. One particular source of such side channels is the cache, a vital component of modern processors that enhances computational speed by storing frequently accessed data from random access memory (RAM). Due to their limited capacity, caches often need to be shared among concurrently running applications, resulting in vulnerabilities. Cache side-channel attacks, which exploit such vulnerabilities, have received significant attention due to their ability to stealthily compromise information confidentiality and the challenge in detecting and countering them. Consequently, numerous defense strategies have been proposed to mitigate these attacks. This thesis explores these defense strategies against cache side-channels, assesses their effectiveness, and identifies any potential vulnerabilities that could be used to undermine the effectiveness of these defense strategies. The first contribution of this thesis is a software framework to assess the security of secure cache designs. We show that while most secure caches are protected from eviction-set-based attacks, they are vulnerable to occupancybased attacks, which works just as well as eviction-set-based attacks, and therefore should be taken into account when designing and evaluating secure caches. Our second contribution presents a method that utilizes speculative execution to enable high-resolution attacks on low-resolution timers, a common cache attack countermeasure adopted by web browsers. We demonstrate that our technique not only allows for high-resolution attacks to be performed on low-resolution timers, but is also Turing-complete and is capable of performing robust calculations on cache states. Through this research, we uncover a new attack vector on low-resolution timers. By exposing this vulnerability, we hope to prompt the necessary measures to address the issue and enhance the security of systems in the future. Our third contribution is a survey, paired with experimental assessment of cache side-channel attack detection techniques using hardware performance counters. We show that, despite numerous claims regarding their efficacy, most detection techniques fail to perform proper evaluation of their performance, leaving them vulnerable to more advanced attacks. We identify and outline these shortcomings, and furnish experimental evidence to corroborate our findings. Furthermore, we demonstrate a new attack that is capable of compromising these detection methods. Our aim is to bring attention to these shortcomings and provide insights that can aid in the development of more robust cache side-channel attack detection techniques. This thesis contributes to a deeper comprehension of cache side-channel attacks and their potential effects on information security. Furthermore, it offers valuable insights into the efficacy of existing mitigation approaches and detection methods, while identifying areas for future research and development to better safeguard our computing devices and data from these insidious attacks.Thesis (MPhil) -- University of Adelaide, School of Computer and Mathematical Sciences, 202

    Approximation Opportunities in Edge Computing Hardware : A Systematic Literature Review

    Get PDF
    With the increasing popularity of the Internet of Things and massive Machine Type Communication technologies, the number of connected devices is rising. However, while enabling valuable effects to our lives, bandwidth and latency constraints challenge Cloud processing of their associated data amounts. A promising solution to these challenges is the combination of Edge and approximate computing techniques that allows for data processing nearer to the user. This paper aims to survey the potential benefits of these paradigms’ intersection. We provide a state-of-the-art review of circuit-level and architecture-level hardware techniques and popular applications. We also outline essential future research directions.publishedVersionPeer reviewe
    corecore