9,410 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    A DDoS Attack Detection and Mitigation with Software-Defined Internet of Things Framework

    Get PDF
    With the spread of Internet of Things' (IoT) applications, security has become extremely important. A recent distributed denial-of-service (DDoS) attack revealed the ubiquity of vulnerabilities in IoT, and many IoT devices unwittingly contributed to the DDoS attack. The emerging software-defined anything (SDx) paradigm provides a way to safely manage IoT devices. In this paper, we first present a general framework for software-defined Internet of Things (SD-IoT) based on the SDx paradigm. The proposed framework consists of a controller pool containing SD-IoT controllers, SD-IoT switches integrated with an IoT gateway, and IoT devices. We then propose an algorithm for detecting and mitigating DDoS attacks using the proposed SD-IoT framework, and in the proposed algorithm, the cosine similarity of the vectors of the packet-in message rate at boundary SD-IoT switch ports is used to determine whether DDoS attacks occur in the IoT. Finally, experimental results show that the proposed algorithm has good performance, and the proposed framework adapts to strengthen the security of the IoT with heterogeneous and vulnerable devices

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    Robust and Reliable Security Approach for IoMT: Detection of DoS and Delay Attacks through a High-Accuracy Machine Learning Model

    Get PDF
    Internet of Medical Things (IoMT ) refers to the network of medical devices and healthcare systems that are connected to the internet. However, this connectivity also makes IoMT vulnerable to cyberattacks such as DoS and Delay attacks , posing risks to patient safety, data security, and public trust. Early detection of these attacks is crucial to prevent harm to patients and system malfunctions. In this paper, we address the detection and mitigation of DoS and Delay attacks in the IoMT using machine learning techniques. To achieve this objective, we constructed an IoMT network scenario using Omnet++ and recorded network traffic data. Subsequently, we utilized this data to train a set of common machine learning algorithms. Additionally, we proposed an Enhanced Random Forest Classifier for Achieving the Best Execution Time (ERF-ABE), which aims to achieve high accuracy and sensitivity as well as  low execution time for detecting these types of attacks in IoMT networks. This classifier combines the strengths of random forests with optimization techniques to enhance performance. Based on the results, the execution time has been reduced by implementing ERF-ABE, while maintaining high levels of accuracy and sensitivity

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges
    corecore