3,253 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    From Prompt Injections to SQL Injection Attacks: How Protected is Your LLM-Integrated Web Application?

    Full text link
    Large Language Models (LLMs) have found widespread applications in various domains, including web applications, where they facilitate human interaction via chatbots with natural language interfaces. Internally, aided by an LLM-integration middleware such as Langchain, user prompts are translated into SQL queries used by the LLM to provide meaningful responses to users. However, unsanitized user prompts can lead to SQL injection attacks, potentially compromising the security of the database. Despite the growing interest in prompt injection vulnerabilities targeting LLMs, the specific risks of generating SQL injection attacks through prompt injections have not been extensively studied. In this paper, we present a comprehensive examination of prompt-to-SQL (P2_2SQL) injections targeting web applications based on the Langchain framework. Using Langchain as our case study, we characterize P2_2SQL injections, exploring their variants and impact on application security through multiple concrete examples. Furthermore, we evaluate 7 state-of-the-art LLMs, demonstrating the pervasiveness of P2_2SQL attacks across language models. Our findings indicate that LLM-integrated applications based on Langchain are highly susceptible to P2_2SQL injection attacks, warranting the adoption of robust defenses. To counter these attacks, we propose four effective defense techniques that can be integrated as extensions to the Langchain framework. We validate the defenses through an experimental evaluation with a real-world use case application.Comment: 12 pages, 3 figures, 3 tables, 5 listing

    Web Application Weakness Ontology Based on Vulnerability Data

    Full text link
    Web applications are becoming more ubiquitous. All manner of physical devices are now connected and often have a variety of web applications and web-interfaces. This proliferation of web applications has been accompanied by an increase in reported software vulnerabilities. The objective of this analysis of vulnerability data is to understand the current landscape of reported web application flaws. Along those lines, this work reviews ten years (2011 - 2020) of vulnerability data in the National Vulnerability Database. Based on this data, most common web application weaknesses are identified and their profiles presented. A weakness ontology is developed to capture the attributes of these weaknesses. These include their attack method and attack vectors. Also described is the impact of the weaknesses to software quality attributes. Additionally, the technologies that are susceptible to each weakness are presented, they include programming languages, frameworks, communication protocols, and data formats

    Mitigating Use-After-Free Attacks Using Memory-Reuse-Prohibited Library

    Get PDF
    Recently, there has been an increase in use-after-free (UAF) vulnerabilities, which are exploited using a dangling pointer that refers to a freed memory. In particular, large-scale programs such as browsers often include many dangling pointers, and UAF vulnerabilities are frequently exploited by drive-by download attacks. Various methods to prevent UAF attacks have been proposed. However, only a few methods can effectively prevent UAF attacks during runtime with low overhead. In this paper, we propose HeapRevolver, which is a novel UAF attackprevention method that delays and randomizes the timing of release of freed memory area by using a memory-reuse-prohibited library, which prohibits a freed memory area from being reused for a certain period. The first condition for reuse is that the total size of the freed memory area is beyond the designated size. The threshold for the conditions of reuse of the freed memory area can be randomized by HeapRevolver. Furthermore, we add a second condition for reuse in which the freed memory area is merged with an adjacent freed memory area before release. Furthermore, HeapRevolver can be applied without modifying the target programs. In this paper, we describe the design and implementation of HeapRevolver in Linux and Windows, and report its evaluation results. The results show that HeapRevolver can prevent attacks that exploit existing UAF vulnerabilities. In addition, the overhead is small

    TAXONOMY OF SECURITY AND PRIVACY ISSUES IN SERVERLESS COMPUTING

    Get PDF
    The advent of cloud computing has led to a new era of computer usage. Networking and physical security are some of the IT infrastructure concerns that IT administrators around the world had to worry about for their individual environments. Cloud computing took away that burden and redefined the meaning of IT administrators. Serverless computing as it relates to secure software development is creating the same kind of change. Developers can quickly spin up a secure development environment in a matter of minutes without having to worry about any of the underlying infrastructure setups. In the paper, we will look at the merits and demerits of serverless computing, what is drawing the demand for serverless computing among developers, the security and privacy issues of serverless technology, and detail the parameters to consider when setting up and using a secure development environment based on serverless computin

    Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces

    Full text link
    Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that these devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Unfortunately, web security is known to be difficult, and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the vendor, device, or architecture. To achieve this goal, our framework performs full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we analyze the web interfaces within the firmware using both static and dynamic tools. We also present some interesting case-studies, and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale. We validate our framework by testing it on 1925 firmware images from 54 different vendors. We discover important vulnerabilities in 185 firmware images, affecting nearly a quarter of vendors in our dataset. These experimental results demonstrate the effectiveness of our approach

    Security and privacy problems in voice assistant applications: A survey

    Get PDF
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain

    Ensuring compliance with data privacy and usage policies in online services

    Get PDF
    Online services collect and process a variety of sensitive personal data that is subject to complex privacy and usage policies. Complying with the policies is critical, often legally binding for service providers, but it is challenging as applications are prone to many disclosure threats. We present two compliance systems, Qapla and Pacer, that ensure efficient policy compliance in the face of direct and side-channel disclosures, respectively. Qapla prevents direct disclosures in database-backed applications (e.g., personnel management systems), which are subject to complex access control, data linking, and aggregation policies. Conventional methods inline policy checks with application code. Qapla instead specifies policies directly on the database and enforces them in a database adapter, thus separating compliance from the application code. Pacer prevents network side-channel leaks in cloud applications. A tenant’s secrets may leak via its network traffic shape, which can be observed at shared network links (e.g., network cards, switches). Pacer implements a cloaked tunnel abstraction, which hides secret-dependent variation in tenant’s traffic shape, but allows variations based on non-secret information, enabling secure and efficient use of network resources in the cloud. Both systems require modest development efforts, and incur moderate performance overheads, thus demonstrating their usability.Onlinedienste sammeln und verarbeiten eine Vielzahl sensibler persönlicher Daten, die komplexen Datenschutzrichtlinien unterliegen. Die Einhaltung dieser Richtlinien ist häufig rechtlich bindend für Dienstanbieter und gleichzeitig eine Herausforderung, da Fehler in Anwendungsprogrammen zu einer unabsichtlichen Offenlegung führen können. Wir präsentieren zwei Compliance-Systeme, Qapla und Pacer, die Richtlinien effizient einhalten und gegen direkte und indirekte Offenlegungen durch Seitenkanäle schützen. Qapla verhindert direkte Offenlegungen in datenbankgestützten Anwendungen. Herkömmliche Methoden binden Richtlinienprüfungen in Anwendungscode ein. Stattdessen gibt Qapla Richtlinien direkt in der Datenbank an und setzt sie in einem Datenbankadapter durch. Die Konformität ist somit vom Anwendungscode getrennt. Pacer verhindert Netzwerkseitenkanaloffenlegungen in Cloud-Anwendungen. Geheimnisse eines Nutzers können über die Form des Netzwerkverkehr offengelegt werden, die bei gemeinsam genutzten Netzwerkelementen (z. B. Netzwerkkarten, Switches) beobachtet werden kann. Pacer implementiert eine Tunnelabstraktion, die Geheimnisse im Netzwerkverkehr des Nutzers verbirgt, jedoch Variationen basier- end auf nicht geheimen Informationen zulässt und eine sichere und effiziente Nutzung der Netzwerkressourcen in der Cloud ermöglicht. Beide Systeme erfordern geringen Entwicklungsaufwand und verursachen einen moderaten Leistungsaufwand, wodurch ihre Nützlichkeit demonstriert wird
    • …
    corecore