1,094 research outputs found

    Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 6: Implementation schedule, development costs, operational costs, benefit assessment, impact on company organization, spin-off assessment, phase 1, tasks 3 to 8

    Get PDF
    A baseline implementation plan, including alternative implementation approaches for critical software elements and variants to the plan, was developed. The basic philosophy was aimed at: (1) a progressive release of capability for three major computing systems, (2) an end product that was a working tool, (3) giving participation to industry, government agencies, and universities, and (4) emphasizing the development of critical elements of the IPAD framework software. The results of these tasks indicate an IPAD first release capability 45 months after go-ahead, a five year total implementation schedule, and a total developmental cost of 2027 man-months and 1074 computer hours. Several areas of operational cost increases were identified mainly due to the impact of additional equipment needed and additional computer overhead. The benefits of an IPAD system were related mainly to potential savings in engineering man-hours, reduction of design-cycle calendar time, and indirect upgrading of product quality and performance

    Department for Education update to the Review : Departmental Improvement Plan

    Get PDF

    Patterns of Membrane Potential of Cells Isolated from the Midgut of \u3ci\u3eHeliothis virescens\u3c/i\u3e

    Get PDF
    The midgut is the main point of interaction between a lepidopteran larva and its environment, so understanding how the gut functions is important not just for understanding gut physiology but also the ecology and evolution of these organism. The midgut of these larvae is a fascinating system in which to study developmental, regeneration, and immune physiology. The midgut can exhibit up to a 200-fold increase in size through ontogeny, primarily through addition of new cells at molt, while damaged cells are replaced throughout intermolt periods. In the midgut of lepidopteran larvae, mature cells are produced from stem cells, localized in pockets underneath the mature cells. Several regulators of stem cell activity are known, but no integrative model has been established. In numerous animal taxa, bioelectric phenomena regulate stem cell activity, including duplication and differentiation. Here, we are using the tobacco budworm, Heliothis virescens, to characterize bioelectric patterns in the lepidopteran larval gut. We adapted a method to isolate stem and mature gut cells from physiologically staged fourth instar larvae and assay their membrane potential. As bioelectric phenomena are highly important in gut physiology, our results may be useful in regulating lepidopteran pests. Finally, our results could help further our understanding of how physiology and an organism’s environment interact

    Interdependence of Surface Roughness on Icephobic Performance: A Review

    Get PDF
    Ice protection techniques have attracted significant interest, notably in aerospace and wind energy applications. However, the current solutions are mostly costly and inconvenient due to energy-intensive and environmental concerns. One of the appealing strategies is the use of passive icephobicity, in the form of coatings, which is induced by means of several material strategies, such as hydrophobicity, surface texturing, surface elasticity, and the physical infusion of ice-depressing liquids, etc. In this review, surface-roughness-related icephobicity is critically discussed to understand the challenges and the role of roughness, especially on superhydrophobic surfaces. Surface roughness as an intrinsic, independent surface property for anti-icing and de-icing performance is also debated, and their interdependence is explained using the related physical mechanisms and thermodynamics of ice nucleation. Furthermore, the role of surface roughness in the case of elastomeric or low-modulus polymeric coatings, which typically instigate an easy release of ice, is examined. In addition to material-centric approaches, the influence of surface roughness in de-icing evaluation is also explored, and a comparative assessment is conducted to understand the testing sensitivity to various surface characteristics. This review exemplifies that surface roughness plays a crucial role in incorporating and maintaining icephobic performance and is intrinsically interlinked with other surface-induced icephobicity strategies, including superhydrophobicity and elastomeric surfaces. Furthermore, the de-icing evaluation methods also appear to be roughness sensitive in a certain range, indicating a dominant role of mechanically interlocked ice

    Essays in statistical arbitrage

    No full text
    This three-paper thesis explores the important relationship between arbitrage and price efficiency. Chapter 3 investigates the risk-bearing capacity of arbitrageurs under varying degrees and types of risk. A novel stochastic process is introduced to the literature that is capable of jointly capturing fundamental risk factors which are absent from extant specifications. Using stochastic optimal control theory, the degree to which arbitrageurs' investment behaviour is affected by aversion to these risks is analytically characterized, as well as conditions under which arbitrageurs cut losses, effectively exacerbating pricing disequilibria. Chapter 4 explores the role of arbitrage in enforcing price parity between cross-listed securities. This work employs an overlooked mechanism by which arbitrage can maintain parity, namely pairs-trading, which is cheaper to implement than the mechanism most commonly employed in the literature on cross-listed securities. This work shows that arbitrage is successful at enforcing parity between cross-listed securities, and also documents the main limits to arbitrage in this market setting. Chapter 5 examines the extent to which arbitrage contributes to the flow of information across markets. It is shown that microscopic lead/lag relationships of the order of a few hundred milliseconds exist across three major international index futures. Importantly, these delays last long enough, and induce pricing anomalies large enough, to compensate arbitrageurs for appropriating pricing disequilibria. These results accord with the view that temporary disequilibria incentivise arbitrageurs to correct pricing anomalies

    Planetary rovers and data fusion

    Get PDF
    This research will investigate the problem of position estimation for planetary rovers. Diverse algorithmic filters are available for collecting input data and transforming that data to useful information for the purpose of position estimation process. The terrain has sandy soil which might cause slipping of the robot, and small stones and pebbles which can affect trajectory. The Kalman Filter, a state estimation algorithm was used for fusing the sensor data to improve the position measurement of the rover. For the rover application the locomotion and errors accumulated by the rover is compensated by the Kalman Filter. The movement of a rover in a rough terrain is challenging especially with limited sensors to tackle the problem. Thus, an initiative was taken to test drive the rover during the field trial and expose the mobile platform to hard ground and soft ground(sand). It was found that the LSV system produced speckle image and values which proved invaluable for further research and for the implementation of data fusion. During the field trial,It was also discovered that in a at hard surface the problem of the steering rover is minimal. However, when the rover was under the influence of soft sand the rover tended to drift away and struggled to navigate. This research introduced the laser speckle velocimetry as an alternative for odometric measurement. LSV data was gathered during the field trial to further simulate under MATLAB, which is a computational/mathematical programming software used for the simulation of the rover trajectory. The wheel encoders came with associated errors during the position measurement process. This was observed during the earlier field trials too. It was also discovered that the Laser Speckle Velocimetry measurement was able to measure accurately the position measurement but at the same time sensitivity of the optics produced noise which needed to be addressed as error problem. Though the rough terrain is found in Mars, this paper is applicable to a terrestrial robot on Earth. There are regions in Earth which have rough terrains and regions which are hard to measure with encoders. This is especially true concerning icy places like Antarctica, Greenland and others. The proposed implementation for the development of the locomotion system is to model a system for the position estimation through the use of simulation and collecting data using the LSV. Two simulations are performed, one is the differential drive of a two wheel robot and the second involves the fusion of the differential drive robot data and the LSV data collected from the rover testbed. The results have been positive. The expected contributions from the research work includes a design of a LSV system to aid the locomotion measurement system. Simulation results show the effect of different sensors and velocity of the robot. The kalman filter improves the position estimation process

    Friction and Wear Performance Evaluation of Bio-Lubricants and DLC Coatings on Cam/Tappet Interface of Internal Combustion Engines

    Get PDF
    The environmental concerns associated with artificially formulated engine oils have forced a shift towards bio-based lubricants. The deposition of hard coatings on engine components and migrating to environmentally friendly green lubricants can help in this regard. Chemically modified forms of vegetable oils, with better low-temperature characteristics and enhanced thermo-oxidative stability, are suitable substitutes to conventional lubricant base oils. The research presented in this manuscript was undertaken to experimentally investigate the wear and friction performance of a possible future generation of an environmentally friendly bio-based lubricant as a potential replacement for conventional engine lubricants. In order to quantify the tribological benefits which can be gained by the deposition of DLC coatings, (an (a-C:H) hydrogenated DLC coating and an (a-C:H:W) tungsten-doped DLC coating) were applied on the cam/tappet interface of a direct acting valve train assembly of an internal combustion engine. The tribological correlation between DLC-coated engine components, lubricant base oils and lubricant additives have been thoroughly investigated in this study using actual engine operating conditions. Two additive-free base oils (polyalphaolefines (PAO) and chemically-modified palm oil (TMP)) and two multi-additive-containing lubricants were used in this investigation. Real-time drive torque was measured to determine the friction force, detailed post-test analysis was performed, which involved the use of a specialized jig to measure camlobe wear. An optical profilometer was used to measure the wear on the tappet, high-resolution scanning electron microscopy was employed to study the wear mechanism and energy-dispersive X-ray spectroscopy was performed on the tested samples to qualitatively access the degradation of the coating. When using additive-free TMP, a low friction coefficient was observed for the cam/tappet interface. The presence of additives further improved the friction characteristics of TMP, resulting in reduced average friction torque values. A tremendous enhancement in wear performance was recorded with a-C:H-coated parts and the coating was able to withstand the test conditions with little or no delamination

    Friction and wear performance evaluation of bio-lubricants and DLC coatings on cam/tappet interface of internal combustion engines

    Get PDF
    The environmental concerns associated with artificially formulated engine oils have forced a shift towards bio-based lubricants. The deposition of hard coatings on engine components and migrating to environmentally friendly green lubricants can help in this regard. Chemically modified forms of vegetable oils, with better low-temperature characteristics and enhanced thermo-oxidative stability, are suitable substitutes to conventional lubricant base oils. The research presented in this manuscript was undertaken to experimentally investigate the wear and friction performance of a possible future generation of an environmentally friendly bio-based lubricant as a potential replacement for conventional engine lubricants. In order to quantify the tribological benefits which can be gained by the deposition of DLC coatings, (an (a-C:H) hydrogenated DLC coating and an (a-C:H:W) tungsten-doped DLC coating) were applied on the cam/tappet interface of a direct acting valve train assembly of an internal combustion engine. The tribological correlation between DLC-coated engine components, lubricant base oils and lubricant additives have been thoroughly investigated in this study using actual engine operating conditions. Two additive-free base oils (polyalphaolefines (PAO) and chemically-modified palm oil (TMP)) and two multi-additive-containing lubricants were used in this investigation. Real-time drive torque was measured to determine the friction force, detailed post-test analysis was performed, which involved the use of a specialized jig to measure camlobe wear. An optical profilometer was used to measure the wear on the tappet, high-resolution scanning electron microscopy was employed to study the wear mechanism and energy-dispersive X-ray spectroscopy was performed on the tested samples to qualitatively access the degradation of the coating. When using additive-free TMP, a low friction coefficient was observed for the cam/tappet interface. The presence of additives further improved the friction characteristics of TMP, resulting in reduced average friction torque values. A tremendous enhancement in wear performance was recorded with a-C:H-coated parts and the coating was able to withstand the test conditions with little or no delamination

    Friction and Wear Performance Evaluation of Bio-Lubricants and DLC Coatings on Cam/Tappet Interface of Internal Combustion Engines.

    Full text link
    The environmental concerns associated with artificially formulated engine oils have forced a shift towards bio-based lubricants. The deposition of hard coatings on engine components and migrating to environmentally friendly green lubricants can help in this regard. Chemically modified forms of vegetable oils, with better low-temperature characteristics and enhanced thermo-oxidative stability, are suitable substitutes to conventional lubricant base oils. The research presented in this manuscript was undertaken to experimentally investigate the wear and friction performance of a possible future generation of an environmentally friendly bio-based lubricant as a potential replacement for conventional engine lubricants. In order to quantify the tribological benefits which can be gained by the deposition of DLC coatings, (an (a-C:H) hydrogenated DLC coating and an (a-C:H:W) tungsten-doped DLC coating) were applied on the cam/tappet interface of a direct acting valve train assembly of an internal combustion engine. The tribological correlation between DLC-coated engine components, lubricant base oils and lubricant additives have been thoroughly investigated in this study using actual engine operating conditions. Two additive-free base oils (polyalphaolefines (PAO) and chemically-modified palm oil (TMP)) and two multi-additive-containing lubricants were used in this investigation. Real-time drive torque was measured to determine the friction force, detailed post-test analysis was performed, which involved the use of a specialized jig to measure camlobe wear. An optical profilometer was used to measure the wear on the tappet, high-resolution scanning electron microscopy was employed to study the wear mechanism and energy-dispersive X-ray spectroscopy was performed on the tested samples to qualitatively access the degradation of the coating. When using additive-free TMP, a low friction coefficient was observed for the cam/tappet interface. The presence of additives further improved the friction characteristics of TMP, resulting in reduced average friction torque values. A tremendous enhancement in wear performance was recorded with a-C:H-coated parts and the coating was able to withstand the test conditions with little or no delamination

    Transcription factor LSF: a mitotic regulator in hepatocellular carcinoma cells

    Get PDF
    Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Current treatments are subpar, with late stage diagnosis and poor prognosis contributing to limited treatment options. The evolutionarily conserved, ubiquitously expressed transcription factor LSF is overexpressed in HCC, and its expression is positively correlated with disease severity. Certain small molecules, known as Factor Quinolinone Inhibitors (FQIs), specifically inhibit LSF DNA-binding activity, inhibit HCC cell proliferation in vitro and prevent tumor growth in an endogenous mouse liver cancer model without apparent toxicity. The targeting of transcription factors by small molecule inhibitors has been historically difficult (Dunker and Uversky, 2010), warranting further molecular investigation into the requirement for LSF in HCC to confirm that the anti-tumor effects of FQIs are the consequence of LSF inhibition. This body of work investigates a dual approach for inhibiting LSF function in order to determine the molecular consequences for HCC cells. To identify the specific point of the cell cycle where LSF is required for HCC proliferation, synchronous HCC cells were treated with FQI or with short interfering RNA to reduce levels of LSF. The results indicate that LSF is required for proper mitotic progression in HCC cells. Specifically, these data show a reduction of key mitotic regulators Aurora Kinase B and Cdc20, at the level of mRNA and protein expression. Time-lapse microscopy also demonstrated an increase in the time for progression through mitosis, with a prometaphase/metaphase delay. Immunofluorescence analysis revealed a prometaphase delay plus aberrant cell division and generation of multi-nucleated cells. These findings were consistent with both FQI1 treatment and RNA interference. Additionally, shorter incubation with FQI1 surprisingly revealed a distinct, non-transcriptional regulation of mitosis in HCC cells, suggesting that mitotic regulation by LSF is multi-faceted. As a targeted therapy for use in the clinic, the in vivo toxicity of FQIs is critical to investigate. Whole blood provides populations of rapidly dividing normal cells that can test susceptibility to anti-mitotic compounds. When mice were treated with FQI1, the blood analysis showed no toxicity. Taken together, these findings indicate that LSF is a mitotic regulator in HCC, further supporting the therapeutic promise of molecular therapies targeting LSF.2019-03-04T00:00:00
    corecore