128 research outputs found

    ICR ANNUAL REPORT 2022 (Volume 29)[All Pages]

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    Assessing Human Exposure to Contaminants in House Dust

    Get PDF
    Airborne dusts can transport radioactive materials in the form of isolated individual radioactively-hot particles containing high concentrations of radioisotopes. These airborne particles may be inhaled or ingested, becoming a source of internal radiation exposure. After the March 11, 2011, nuclear reactor accidents at Fukushima Daiichi, in northern Japan; eighty-five Japanese environmental samples and 234 US and Canadian samples were collected and analyzed by gamma spectrometry, autoradiography, scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDS), and total alpha and beta counts. Social media and volunteer organizations were an important part of the sample collection effort. The combination of autoradiography and SEM/EDS allowed individual radioactively-hot particles to be isolated and analyzed. Detectable levels of 134Cs and 137Cs were found in 62 of 85 Japanese particulate matter samples. The median dust specific activity for Japanese samples was 2.5 Bq g-1 +/- 1.6 Bq g-1, while the mean dust specific activity was 71 Bq g-1 (RSD = 335 %). The mean was skewed high due to five dust samples with sharply higher specific activities. These five samples had specific activities ranging from 167 kBq g-1 to 5.2 PBq kg-1. Only four of 234 US and Canadian environmental samples had detectable levels of both 134Cs and 137Cs. Gross gamma spectroscopy of Japanese samples also detected 131I and 60Co. US and Canadian dust samples showed primarily naturally-occurring nuclides. More than 300 individual hot particles were identified in Japanese samples. The Japanese particles analyzed by SEM/EDS were found to contain cesium, americium, radium, polonium, tellurium, rubidium and other necessarily or potentially radioactive elements. No cesium-containing hot particles were found in the US, however some dust particles were found that contained uranium, thorium and plutonium. These US particles were all related to identified uranium mines or nuclear materials storage and processing sites. Some of the hot particles detected in this study could cause significant radiation exposures to individuals if inhaled. Where hot particles are present in the environment, radiation dose models must include this exposure component to remain accurate

    ICR ANNUAL REPORT 2020 (Volume 27)[All Pages]

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    Fourth International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document

    Japan fuzzified: the development of fuzzy logic research in Japan

    Get PDF

    Recyclable Electrical Machine Designs with 3D Flux and Non-Traditional Materials

    Get PDF

    A behaviour changing syringe : making invisible risk, visible to deter the reuse of syringes in a curative context

    Get PDF
    Medical devices are a core component of health systems, and thus required for achieving universal health coverage, and have been recognized as indispensable for health care provision in the World Health As-sembly resolution, on health technologies (WHA60.29) in 2007. These health technologies are required in screening, prevention, diagnosis, treatment, rehabilitation and palliative care, but their safe use, rational selection, assessment, effective regulation and innovation remain a very complicated challenge in all set-tings, due to the enormous diversity, lack of availability, quality, safety, appropriateness and affordability, particularly in low-resource settings. Therefore, even if important awareness has been raised in the last few years, patients still lack access to priority medical devices and thus much work has to be done by health professionals, governments, academia and industry, among many others. Following the resolution of 2007, the priority medical devices report and the success of the First WHO Global Forum on Medical Devices in Thailand in 2010, WHO became highly committed to the important work related to medical devices. New WHO tools and publications were developed and disseminated to increase awareness in the field in ministries of health, industry and academia. Several workshops and continuous capacity building in various countries and regions led to a high demand from medical device stakeholders, for a second global forum that would follow-up and expand on the topics and recommenda-tions presented previously. Accordingly, in August 2013, WHO determined to convene a Second Global Forum on Medical Devices to take place in Geneva, Switzerland, on 22-24 November 2013. The objectives of the Forum were to: (i) define methods of increasing access to priority medical devices under the Universal Health Coverage initiative; (ii) share evidence on best practices in health technology assessment, management and regulation of medical devices; (iii) demonstrate the development and use of appropriate and innovative technologies that respond to global health priorities; and (iv) present the outcomes of the implementation of the World Health Assembly resolution on health technologies (WHA60.29) and the status of actions resulting from the First Global Forum on Medical Devices..

    Utilizing Îș-carrageenan Hydrogels in Teaching, Outreach and Chemical Gardens

    Get PDF
    Îș-carrageenan is a biopolymer that can be extracted from red seaweeds and has found great use for example in the food industry due to its excellent gelling, thickening and stabilizing abilities. The work done in this thesis investigates the utilization of Îș-carrageenan in the growth of calcium phosphate chemical gardens with an educational touch. The term chemical gardens is used to describe the plant-like, seemingly growing, structures that result from the precipitation that occurs when placing crystal seeds of transition metal salts in silicate solution. Stemming from these classical chemical gardens a new multidisciplinary field termed chemobrionics has emerged. This is a field in which the research is focused on learning more about these structures, the processes behind them and how they can be controlled. While chemical gardens and chemobrionic structures in general continue to fascinate scientists, science itself does not seem to fascinate nor interest enough of young students today. Therefore, a future lack of STEM (science, technology, engineering, mathematics) professionals in all settings is a growing concern, nationally and globally. The two main aims of the thesis were to investigate the use of Îș-carrageenan hydrogels 1) as a base for developing teaching and outreach materials to offer teachers more available lab work, as these are usually appreciated by the students, and 2) as a replacement for the metal salt crystals usually used in chemical gardens in hope that hydrogels containing metal ions would give more control of the growth process. To make both the teaching material as well as the developed chemical gardens accessible for teachers to recreate at schools, a further, no less important, aim was to develop all processes so that they could be done utilizing food grade Îș-carrageenan. A writing board consisting of a Îș-carrageenan hydrogel containing red cabbage juice was developed for the teaching of electrochemistry and for being used in outreach activities at the Faculty of Science and Engineering at Åbo Akademi University. The working principle of the writing board is based in the pH changes associated with the electrolysis of water. Additionally, two chemobrionic systems utilizing Îș-carrageenan hydrogels for growing chemical gardens were created using teaching friendly materials and processes. Structures in the form of calcium phosphate tubes were grown from the interface of Îș-carrageenan hydrogels containing either calcium ions (Ca-gel system) or phosphate ions (Pgel system). In both cases, the hydrogels were layered with a counterion solution (phosphate or calcium respectively). The effect of the time spent in the counterion solution (maturation time) on the created tubes was investigated in both systems. The effect of the amount of Îș-carrageenan used in the hydrogels on the created tubes were investigated in the P-gel system. The writing board concept as an outreach activity was evaluated by upper secondary school students visiting the Faculty of Science and Engineering at Åbo Akademi University, responding positively to the concept. Unfortunately, due to the COVID-19 pandemic, only a trial version could be evaluated. A version aimed at classroom teaching was also developed but could not be evaluated for this same reason. Thus, no further development was done to either of the version. The two chemical garden systems gave rise to tubes with observable differences in their macrostructure. Tubes grown in the Ca-gel system were straight and long while the tubes grown in the P-gel system were shorter and more kinked. The difference was partly explained by a larger pH difference between the hydrogel and the counterion solution observed in the Ca-gel system. For the P-gel system, increased amounts of Îș-carrageenan in the hydrogel resulted in even shorter and thinner tubes. Analysis revealed that both systems resulted in more crystalline structures with increased time spent in the counterion solution, but the Ca-gel structures remained overall more amorphous. Further, tubes from both systems contained hydroxyapatite phases. Additional calcite phases were observed for the P-gel structures while the Ca-gel structures contained measurable traces of Îș-carrageenan originating from the hydrogel. The chemical garden systems were developed with teaching and outreach in mind, but no trial or evaluation could be performed in this case either. This work shows that Îș-carrageenan can be used for creating teaching materials and as the seed containing one of the precipitating ions when growing chemical gardens. The work is adding to the knowledge of chemobrionic research by extending the library of (bio)polymers that can be used for growing chemical gardens. The relative ease, with which the hydrogel writing board could be prepared, makes the writing board as well as the red cabbage hydrogel a versatile lab work with potential use in many settings. This work also contributes to the chemobrionic knowledge by showing that 1) tubular calcium phosphate structures can be grown from the interface of a Îș-carrageenan-based hydrogel, 2) by introducing a chemical garden system where the anion (phosphate) is incorporated in the hydrogel phase of the system and 3) by showing that hydrogel systems can be inversed and thereby giving more new options for creating different kinds of structures. Additionally, it shows that hydrogel chemical gardens and materials research can be conducted while having teaching and outreach in mind during the whole process.Îș-karragenan Ă€r en biopolymer som kan utvinnas ur rödalger och som har en bred anvĂ€ndnings till exempel inom livsmedelsindustrin tack vare sina utmĂ€rkta egenskaper bland annat som förtjocknings- och bindemedel. I den hĂ€r avhandlingen undersöks utnyttjandet av Îș-karragenan vid skapandet av kemiska trĂ€dgĂ„rdar bestĂ„ende av kalciumfosfat pĂ„ ett sĂ„dant sĂ€tt att Ă€ven undervisningsrelaterade aspekter hĂ„lls i Ă„tanke. Termen kemiska trĂ€dgĂ„rdar anvĂ€nds som beteckning för att beskriva de vĂ€xtliknande strukturer som uppstĂ„r till följd av fĂ€llningsreaktioner nĂ€r kristaller av övergĂ„ngsmetallsalter placeras i en silikatlösning. Med dessa klassiska kemiska trĂ€dgĂ„rdar som utgĂ„ngspunkt har ett nytt tvĂ€rvetenskapligt vetenskapsomrĂ„de med namnet kemobrionik (chemobrionics) uppstĂ„tt. Forskningen inom omrĂ„det fokuserar pĂ„ att lĂ€ra sig mera om dessa strukturer, hur de uppstĂ„r och hur de kan kontrolleras. Samtidigt som de kemiska trĂ€dgĂ„rdarna och övriga liknande strukturer fortsĂ€tter att fascinera forskare runt om i vĂ€rlden sĂ„ verkar naturvetenskapen sjĂ€lv fascinera unga allt mindre. En framtida brist pĂ„ expertis inom de naturvetenskapliga och tekniska omrĂ„dena Ă€r dĂ€rför ett orosmoment sĂ„ vĂ€l nationellt som globalt. De tvĂ„ huvudmĂ„len med avhandlingen var att undersöka huruvida det Ă€r möjligt att anvĂ€nda hydrogeler baserade pĂ„ Îș-karragenan 1) som en utgĂ„ngspunkt för att skapa material Ă€mnat för laborationsundervisning och utĂ„triktad verksamhet riktad till skolor (outreach) och 2) för att ersĂ€tta kristallerna av metallsalter i kemiska trĂ€dgĂ„rdar med hydrogeler fyllda av metallsalt. Laborationsarbeten Ă€r ofta uppskattade av elever och att erbjuda lĂ€rare fler tillgĂ€ngliga laborationsarbeten kunde öka pĂ„ intresset för kemi. Genom att ersĂ€tta saltkristaller med saltfyllda hydrogeler kan man fĂ„ mer kontroll över tillvĂ€xtprocessen av de kemiska trĂ€dgĂ„rdarna. För att göra det möjligt för vilken lĂ€rare som helst att ta in undervisningsmaterialet och de kemiska trĂ€dgĂ„rdarna i sin egen undervisning var ytterligare ett viktigt mĂ„l att allt kunde skapas med hjĂ€lp av Îș-karragenan Ă€mnat för matlagning. En skrivplatta baserad pĂ„ en Îș-karragenanhydrogel innehĂ„llande rödkĂ„lssaft utvecklades för undervisning i elektrokemi och med tanke pĂ„ att anvĂ€ndas vid skolbesök till Fakulteten för naturvetenskaper och teknik vid Åbo Akademi. Skrivplattans funktionsprincip baserar sig pĂ„ den pH förĂ€ndring som sker vid elektrolys av vatten. DĂ€rtill skapades tvĂ„ kemobrioniska system innehĂ„llande Îș- karragenanhydrogeler ur vilka det gick att odla kemiska trĂ€dgĂ„rdar genom att anvĂ€nda material och metoder som lĂ€mpar sig för undervisning. Kalciumfosfatstrukturer i form av tuber odlades frĂ„n grĂ€nsytan av Îș-karragenanhydrogeler innehĂ„llande antingen kalciumjoner (Ca-gel-systemet) eller fosfatjoner (P-gel-systemet). I bĂ„da fallen tĂ€cktes hydrogelerna med en lösning innehĂ„llande en motjon (fosfat respektive kalcium). Hur lĂ€ngden av den tid som strukturerna befann sig i motjonslösningen pĂ„verkade strukturerna undersöktes i bĂ„da systemen. P-gel-systemet undersöktes ocksĂ„ med avseende pĂ„ hut mĂ€ngden Îș-karragenan i hydrogelen pĂ„verkade strukturerna. Skrivplattan som aktivitet Ă€mnad för skolbesök utvĂ€rderades av gymnasielever som besökte Fakulteten för naturvetenskaper och teknik vid Åbo Akademi. Mottagandet av konceptet var positivt. DessvĂ€rre kunde endast en testversion av skrivplattan utvĂ€rderas eftersom Covid-19 pandemin satte stopp för ytterligare elevdeltagande. En version av laborationsarbetet med skrivplattan Ă€mnad för klassrumsundervisning utvecklades men kunde sĂ„ledes inte heller utvĂ€rderas. PĂ„ grund av detta utfördes inte nĂ„gon fortsatt utveckling av laborationen i nĂ„gondera formen. De tvĂ„ systemen utvecklade för kemiska trĂ€dgĂ„rdar gav upphov till strukturer med mĂ€rkbara skillnader i makrostruktur. Tuberna i Ca-gel-systemet var raka och lĂ„nga medan tuberna i P-gel-systemet var kortare och krokigare. En delorsak till strukturen kunde förklaras av den betydligt större skillnaden i pH mellan hydrogelen och motjonslösningen i Ca-gel-systemet. Inom P-gel-systemet kunde man erhĂ„lla kortare och tunnare tuber genom att öka mĂ€ngden Îș-karragenan i hydrogelen. Analys av tuberna visade att bĂ„da systemen gav upphov till mer kristallina strukturer ju lĂ€ngre tid d e befann s ig i motjonslösningen, men att tuberna i Ca-gel-systemet överlag förblev mer amorfa i jĂ€mförsele med de frĂ„n P-gel-systemet. FrĂ„n bĂ„da systemen erhölls tuber med hydroxiapatitfaser. Dessutom innehöll P-gel-tuberna kalcit medan Ca-gel-tuberna innehöll smĂ„ men mĂ€tbara mĂ€ngder av Îș-karragenan med ursprung frĂ„n hydrogelen. Systemen med de kemiska trĂ€dgĂ„rdarna utvecklades med undervisning och skolbesök i Ă„tanke, men varken tester eller utvĂ€rderingar kunde utföras i det fallet heller. Detta arbete visar att Îș-karragenan kan anvĂ€ndas bĂ„de i undervisning och för att ersĂ€tta kristaller av metallsalt vid skapandet av kemiska trĂ€dgĂ„rdar. DĂ€rmed bidrar detta arbete med att utöka listan av (bio)polymerer som kan anvĂ€ndas för att tillverka hydrogeler i kemobrioniska system. DĂ„ skrivplattan kunde framstĂ€llas relativt lĂ€tt har bĂ„de den och rödkĂ„lshydrogelen potential att anvĂ€ndas i flertalet sammanhang och med olika typer av grupper. Detta arbete bidrar ocksĂ„ med ökad kunskap inom forskningen av kemobrionik genom att visa att 1) tubulĂ€ra kalciumfosfat strukturer kan odlas frĂ„n grĂ€nsytan av en Îș-karragenanhydrogel, 2) genom att introducera ett system dĂ€r anjonen (fosfat) ingĂ„r i hydrogelfasen av systemet och 3) genom att visa att hydrogelsystem kan inverteras vilket dĂ€rigenom ger nya möjligheter att framstĂ€lla flera typer av strukturer. Arbetet visar dĂ€rtill att kemiska trĂ€dgĂ„rdar odlade utifrĂ„n hydrogeler samt materialforskning kan utföras med undervisning och outreach i Ă„tanke under hela processen
    • 

    corecore