268 research outputs found

    Misspecified Linear Bandits

    Full text link
    We consider the problem of online learning in misspecified linear stochastic multi-armed bandit problems. Regret guarantees for state-of-the-art linear bandit algorithms such as Optimism in the Face of Uncertainty Linear bandit (OFUL) hold under the assumption that the arms expected rewards are perfectly linear in their features. It is, however, of interest to investigate the impact of potential misspecification in linear bandit models, where the expected rewards are perturbed away from the linear subspace determined by the arms features. Although OFUL has recently been shown to be robust to relatively small deviations from linearity, we show that any linear bandit algorithm that enjoys optimal regret performance in the perfectly linear setting (e.g., OFUL) must suffer linear regret under a sparse additive perturbation of the linear model. In an attempt to overcome this negative result, we define a natural class of bandit models characterized by a non-sparse deviation from linearity. We argue that the OFUL algorithm can fail to achieve sublinear regret even under models that have non-sparse deviation.We finally develop a novel bandit algorithm, comprising a hypothesis test for linearity followed by a decision to use either the OFUL or Upper Confidence Bound (UCB) algorithm. For perfectly linear bandit models, the algorithm provably exhibits OFULs favorable regret performance, while for misspecified models satisfying the non-sparse deviation property, the algorithm avoids the linear regret phenomenon and falls back on UCBs sublinear regret scaling. Numerical experiments on synthetic data, and on recommendation data from the public Yahoo! Learning to Rank Challenge dataset, empirically support our findings.Comment: Thirty-First AAAI Conference on Artificial Intelligence, 201

    Linear Bandits with Memory: from Rotting to Rising

    Full text link
    Nonstationary phenomena, such as satiation effects in recommendation, are a common feature of sequential decision-making problems. While these phenomena have been mostly studied in the framework of bandits with finitely many arms, in many practically relevant cases linear bandits provide a more effective modeling choice. In this work, we introduce a general framework for the study of nonstationary linear bandits, where current rewards are influenced by the learner's past actions in a fixed-size window. In particular, our model includes stationary linear bandits as a special case. After showing that the best sequence of actions is NP-hard to compute in our model, we focus on cyclic policies and prove a regret bound for a variant of the OFUL algorithm that balances approximation and estimation errors. Our theoretical findings are supported by experiments (which also include misspecified settings) where our algorithm is seen to perform well against natural baselines

    Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear Bandit Algorithms

    Full text link
    In this paper, we address the stochastic contextual linear bandit problem, where a decision maker is provided a context (a random set of actions drawn from a distribution). The expected reward of each action is specified by the inner product of the action and an unknown parameter. The goal is to design an algorithm that learns to play as close as possible to the unknown optimal policy after a number of action plays. This problem is considered more challenging than the linear bandit problem, which can be viewed as a contextual bandit problem with a \emph{fixed} context. Surprisingly, in this paper, we show that the stochastic contextual problem can be solved as if it is a linear bandit problem. In particular, we establish a novel reduction framework that converts every stochastic contextual linear bandit instance to a linear bandit instance, when the context distribution is known. When the context distribution is unknown, we establish an algorithm that reduces the stochastic contextual instance to a sequence of linear bandit instances with small misspecifications and achieves nearly the same worst-case regret bound as the algorithm that solves the misspecified linear bandit instances. As a consequence, our results imply a O(dTlogT)O(d\sqrt{T\log T}) high-probability regret bound for contextual linear bandits, making progress in resolving an open problem in (Li et al., 2019), (Li et al., 2021). Our reduction framework opens up a new way to approach stochastic contextual linear bandit problems, and enables improved regret bounds in a number of instances including the batch setting, contextual bandits with misspecifications, contextual bandits with sparse unknown parameters, and contextual bandits with adversarial corruption

    Optimal Model Selection in Contextual Bandits with Many Classes via Offline Oracles

    Full text link
    We study the problem of model selection for contextual bandits, in which the algorithm must balance the bias-variance trade-off for model estimation while also balancing the exploration-exploitation trade-off. In this paper, we propose the first reduction of model selection in contextual bandits to offline model selection oracles, allowing for flexible general purpose algorithms with computational requirements no worse than those for model selection for regression. Our main result is a new model selection guarantee for stochastic contextual bandits. When one of the classes in our set is realizable, up to a logarithmic dependency on the number of classes, our algorithm attains optimal realizability-based regret bounds for that class under one of two conditions: if the time-horizon is large enough, or if an assumption that helps with detecting misspecification holds. Hence our algorithm adapts to the complexity of this unknown class. Even when this realizable class is known, we prove improved regret guarantees in early rounds by relying on simpler model classes for those rounds and hence further establish the importance of model selection in contextual bandits
    corecore