7,023 research outputs found

    Mission Aware Energy Saving Strategies For Army Ground Vehicles

    Get PDF
    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is on, gear is on neutral position, the vehicle is stationary, and the alternator powers the systems. The proposed energy saving strategy for silent surveillance mission minimizes unnecessary battery discharges by controlling the power states of systems according to the mission needs and available battery capacity. Initial experiments show that the proposed approach saves 3% energy when compared with the baseline strategy for one scenario and 1.8% for the second scenario. The proposed energy saving strategy for normal surveillance mission operates the engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and simulation uses a computerized vehicle model and a test bench to validate the approach. In comparison to vehicles with fixed high-idle engine speed increments, experiments show that the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground vehicle to start realizing the energy savings

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    Soldier/Hardware-in-the-loop Simulation-based Combat Vehicle Duty Cycle Measurement: Duty Cycle Experiment 2

    Get PDF
    This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware both of which were used to measure the duty cycle of a combat vehicle in a virtual simulation environment. The project discussed is a greatly expanded follow-on to the experiment published in [1]. This paper is written in the context of [1] and therefore highlights the enhancements. The most prominent of these enhancements is the integration (in real-time) of the Power & Electric System Integration Lab (P&E SIL) with a motion base simulator by means of a “long haul” connection over the Internet (a geographical distance of 2,450 miles). The P&E SIL is, therefore, able to respond to commands issued by the vehicle’s driver and gunner and, in real-time, affect the simulated vehicle’s performance. By thus incorporating hardware into a human-in-the-loop experiment, TARDEC engineers are able to evaluate the actual power system as it responds to actual human behavior. After introducing the project, the paper describes the simulation environment which was assembled to run the experiment. It emphasizes the design of the experiment as well as the approach, challenges and issues involved in creating a real-time link between the motion-base simulator and the P&E SIL. It presents the test results and briefly discusses on-going and future work

    Definition of the 2005 flight deck environment

    Get PDF
    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    An Overview of Drone Energy Consumption Factors and Models

    Full text link
    At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV's energy consumption as well as an investigation of different energy models

    Technological Forecasting Applications: Framework and Case Study on Combat Vehicles

    Get PDF
    The technological forecasting for predicting foreseeable scientific breakthroughs, refinements and discoveries has emerged as a serious professional activity in the recent years. In this era of highly competitive economy and cut-throat competitions, where technology change plays a pivotal role, the forecasting is of paramount importance to predict changes in advance and achieve the designated goals within specified time-frame so as to maintain the competitive advantage. The administration of military research and develop'ment has played a disproportionate role in the emergence of technological forecasting as a serious professional activity. This is one marketplace where an acute need for technological forecasting is felt as an adjunct to planning and execution, so as to maintain the muchneeded cutting edge over the adversaries by fielding superior weapon systems. In this paper, an attempt has been made to apply some of the techniques to futuristic combat vehicles. To generate greater confidence in the results, validation has been attempted through analytic hierarchy process. Based on the case study, a generalised framework is also proposed for technological forecasting and technology transfer

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Situational awareness-based energy management for unmanned electric surveillance platforms

    Get PDF
    In the present day fossil fuel availability, cost, security and the pollutant emissions resulting from its use have driven industry into looking for alternative ways of powering vehicles. The aim of this research is to synthesize/design and develop a framework of novel control architectures which can result in complex powered vehicle subsystems to perform better with reduced exogeneuous information. This research looks into the area of energy management by proposing an intelligent based system which not only looks at the beaten path of where energy comes from and how much of it to use, but it goes further by taking into consideration the world around it. By operating without GPS, it realies on data such as usage, average consumption, system loads and even other surrounding vehicles are considered when making the difficult decisions of where to direct the energy into, how much of it, and even when to cut systems off in benefit of others. All this is achieved in an integrated way by working within the limitations of non-fossil fuelled energy sources like fuel cells, ultracapacitors and battery banks using driver-provided information or by crafting an artificial usage profile from historicaly learnt data. By using an organic computing philosophy based on artificial intelligence this alternative approach to energy supply systems presents a different perspective beginning by accepting the fact that when hardware is set energy can be optimized only so much and takes a step further by answering the question of how to best manage it when refuelling might not be an option. The result is a situationally aware system concept that is portable to any type of electrically powered platform be it ground, aerial or marine since it operates on the fact that all operate within three dimensional space. The system´s capabilities are then verified in a virtual reality environment which can be tailored to the meet reseach needs including allowing for different altitudes, environmental temperature and humidity profiles. This VR system is coupled with a chassis dynamometer to allow for testing of real physical prototype unmanned ground vehicles where the intelligent system will benefit by learning from real platform data. The Thesis contributions and objectives are summarised next: The control system proposed includes an awareness of the surroundings within which the vehicle is operating without relying on GPS position information. The system proposed is portable and could be used to control other systems. The test platform developed within the Thesis is flexible and could be used for other systems. The control system for the fuel cell system described within the work has included an allowance for altitude and humidity. These factors would appear to be significant for such systems. The structure of the control system and its hierarchy is novel. The ability of the system to be applied to a UAV and as such control a ‘vehicle’ in 3 dimensions, and yet be also applied to a ground vehicle, where roll and pitch are largely a function of the ground over which it travels (so the UGV only uses a subset of the control functionality). The mission awareness of the control structure appears to be the heart of the potential contribution to knowledge, and that this also includes the ability to create an estimated, artificial mission profile should one not be input by the operators. This learnt / adaptive input could be expanded on to highlight this aspect
    corecore