2,250 research outputs found

    Identifying Cover Songs Using Information-Theoretic Measures of Similarity

    Get PDF
    This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/This paper investigates methods for quantifying similarity between audio signals, specifically for the task of cover song detection. We consider an information-theoretic approach, where we compute pairwise measures of predictability between time series. We compare discrete-valued approaches operating on quantized audio features, to continuous-valued approaches. In the discrete case, we propose a method for computing the normalized compression distance, where we account for correlation between time series. In the continuous case, we propose to compute information-based measures of similarity as statistics of the prediction error between time series. We evaluate our methods on two cover song identification tasks using a data set comprised of 300 Jazz standards and using the Million Song Dataset. For both datasets, we observe that continuous-valued approaches outperform discrete-valued approaches. We consider approaches to estimating the normalized compression distance (NCD) based on string compression and prediction, where we observe that our proposed normalized compression distance with alignment (NCDA) improves average performance over NCD, for sequential compression algorithms. Finally, we demonstrate that continuous-valued distances may be combined to improve performance with respect to baseline approaches. Using a large-scale filter-and-refine approach, we demonstrate state-of-the-art performance for cover song identification using the Million Song Dataset.The work of P. Foster was supported by an Engineering and Physical Sciences Research Council Doctoral Training Account studentship

    Template Adaptation for Improving Automatic Music Transcription

    Get PDF
    In this work, we propose a system for automatic music transcription which adapts dictionary templates so that they closely match the spectral shape of the instrument sources present in each recording. Current dictionary-based automatic transcription systems keep the input dictionary fixed, thus the spectral shape of the dictionary components might not match the shape of the test instrument sources. By performing a conservative transcription pre-processing step, the spectral shape of detected notes can be extracted and utilized in order to adapt the template dictionary. We propose two variants for adaptive transcription, namely for single-instrument transcription and for multiple-instrument transcription. Experiments are carried out using the MAPS and Bach10 databases. Results in terms of multi-pitch detection and instrument assignment show that there is a clear and consistent improvement when adapting the dictionary in contrast with keeping the dictionary fixed

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    A User-assisted Approach to Multiple Instrument Music Transcription

    Get PDF
    PhDThe task of automatic music transcription has been studied for several decades and is regarded as an enabling technology for a multitude of applications such as music retrieval and discovery, intelligent music processing and large-scale musicological analyses. It refers to the process of identifying the musical content of a performance and representing it in a symbolic format. Despite its long research history, fully automatic music transcription systems are still error prone and often fail when more complex polyphonic music is analysed. This gives rise to the question in what ways human knowledge can be incorporated in the transcription process. This thesis investigates ways to involve a human user in the transcription process. More specifically, it is investigated how user input can be employed to derive timbre models for the instruments in a music recording, which are employed to obtain instrument-specific (parts-based) transcriptions. A first investigation studies different types of user input in order to derive instrument models by means of a non-negative matrix factorisation framework. The transcription accuracy of the different models is evaluated and a method is proposed that refines the models by allowing each pitch of each instrument to be represented by multiple basis functions. A second study aims at limiting the amount of user input to make the method more applicable in practice. Different methods are considered to estimate missing non-negative basis functions when only a subset of basis functions can be extracted based on the user information. A method is proposed to track the pitches of individual instruments over time by means of a Viterbi framework in which the states at each time frame contain several candidate instrument-pitch combinations. A transition probability is employed that combines three different criteria: the frame-wise reconstruction error of each combination, a pitch continuity measure that favours similar pitches in consecutive frames, and an explicit activity model for each instrument. The method is shown to outperform other state-of-the-art multi-instrument tracking methods. Finally, the extraction of instrument models that include phase information is investigated as a step towards complex matrix decomposition. The phase relations between the partials of harmonic sounds are explored as a time-invariant property that can be employed to form complex-valued basis functions. The application of the model for a user-assisted transcription task is illustrated with a saxophone example.QMU

    Template Adaptation for Improving Automatic Music Transcription

    Get PDF
    publicationstatus: publishedpublicationstatus: publishedpublicationstatus: publishedIn this work, we propose a system for automatic music transcription which adapts dictionary templates so that they closely match the spectral shape of the instrument sources present in each recording. Current dictionary-based automatic transcription systems keep the input dictionary fixed, thus the spectral shape of the dictionary components might not match the shape of the test instrument sources. By performing a conservative transcription pre-processing step, the spectral shape of detected notes can be extracted and utilized in order to adapt the template dictionary. We propose two variants for adaptive transcription, namely for single-instrument transcription and for multiple-instrument transcription. Experiments are carried out using the MAPS and Bach10 databases. Results in terms of multi-pitch detection and instrument assignment show that there is a clear and consistent improvement when adapting the dictionary in contrast with keeping the dictionary fixed

    Automatic Transcription of Polyphonic Vocal Music

    Get PDF
    This paper presents a method for automatic music transcription applied to audio recordings of a cappella performances with multiple singers. We propose a system for multi-pitch detection and voice assignment that integrates an acoustic and a music language model. The acoustic model performs spectrogram decomposition, extending probabilistic latent component analysis (PLCA) using a six-dimensional dictionary with pre-extracted log-spectral templates. The music language model performs voice separation and assignment using hidden Markov models that apply musicological assumptions. By integrating the two models, the system is able to detect multiple concurrent pitches in polyphonic vocal music and assign each detected pitch to a specific voice type such as soprano, alto, tenor or bass (SATB). We compare our system against multiple baselines, achieving state-of-the-art results for both multi-pitch detection and voice assignment on a dataset of Bach chorales and another of barbershop quartets. We also present an additional evaluation of our system using varied pitch tolerance levels to investigate its performance at 20-cent pitch resolution

    Multipitch Analysis and Tracking for Automatic Music Transcription

    Get PDF
    Music has always played a large role in human life. The technology behind the art has progressed and grown over time in many areas, for instance the instruments themselves, the recording equipment used in studios, and the reproduction through digital signal processing. One facet of music that has seen very little attention over time is the ability to transcribe audio files into musical notation. In this thesis, a method of multipitch analysis is used to track multiple simultaneous notes through time in an audio music file. The analysis method is based on autocorrelation and a specialized peak pruning method to identify only the fundamental frequencies present at any single moment in the sequence. A sliding Hamming window is used to step through the input sound file and track through time. Results show the tracking of nontrivial musical patterns over two octaves in range and varying tempos

    Security and privacy problems in voice assistant applications: A survey

    Get PDF
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain

    Automatic transcription of Turkish microtonal music

    Get PDF
    Automatic music transcription, a central topic in music signal analysis, is typically limited to equal-tempered music and evaluated on a quartertone tolerance level. A system is proposed to automatically transcribe microtonal and heterophonic music as applied to the makam music of Turkey. Specific traits of this music that deviate from properties targeted by current transcription tools are discussed, and a collection of instrumental and vocal recordings is compiled, along with aligned microtonal reference pitch annotations. An existing multi-pitch detection algorithm is adapted for transcribing music with 20 cent resolution, and a method for converting a multi-pitch heterophonic output into a single melodic line is proposed. Evaluation metrics for transcribing microtonal music are applied, which use various levels of tolerance for inaccuracies with respect to frequency and time. Results show that the system is able to transcribe microtonal instrumental music at 20 cent resolution with an F-measure of 56.7%, outperforming state-of-the-art methods for the same task. Case studies on transcribed recordings are provided, to demonstrate the shortcomings and the strengths of the proposed method.QC 20161031</p
    corecore