8,253 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases

    Choosing Attribute Weights for Item Dissimilarity using Clikstream Data with an Application to a Product Catalog Map

    Get PDF
    In content- and knowledge-based recommender systems often a measure of (dis)similarity between items is used. Frequently, this measure is based on the attributes of the items. However, which attributes are important for the users of the system remains an important question to answer. In this paper, we present an approach to determine attribute weights in a dissimilarity measure using clickstream data of an e-commerce website. Counted is how many times products are sold and based on this a Poisson regression model is estimated. Estimates of this model are then used to determine the attribute weights in the dissimilarity measure. We show an application of this approach on a product catalog of MP3 players provided by Compare Group, owner of the Dutch price comparison site http://www.vergelijk.nl, and show how the dissimilarity measure can be used to improve 2D product catalog visualizations.dissimilarity measure;attribute weights;clickstream data;comparison
    • 

    corecore