3,009 research outputs found

    Diffusion models for missing value imputation in tabular data

    Full text link
    Missing value imputation in machine learning is the task of estimating the missing values in the dataset accurately using available information. In this task, several deep generative modeling methods have been proposed and demonstrated their usefulness, e.g., generative adversarial imputation networks. Recently, diffusion models have gained popularity because of their effectiveness in the generative modeling task in images, texts, audio, etc. To our knowledge, less attention has been paid to the investigation of the effectiveness of diffusion models for missing value imputation in tabular data. Based on recent development of diffusion models for time-series data imputation, we propose a diffusion model approach called "Conditional Score-based Diffusion Models for Tabular data" (TabCSDI). To effectively handle categorical variables and numerical variables simultaneously, we investigate three techniques: one-hot encoding, analog bits encoding, and feature tokenization. Experimental results on benchmark datasets demonstrated the effectiveness of TabCSDI compared with well-known existing methods, and also emphasized the importance of the categorical embedding techniques.Comment: Accepted to Table Representation Learning Workshop at NeurIPS 2022. Renamed proposed method name to TabCSD

    Improving Missing Data Imputation with Deep Generative Models

    Full text link
    Datasets with missing values are very common on industry applications, and they can have a negative impact on machine learning models. Recent studies introduced solutions to the problem of imputing missing values based on deep generative models. Previous experiments with Generative Adversarial Networks and Variational Autoencoders showed interesting results in this domain, but it is not clear which method is preferable for different use cases. The goal of this work is twofold: we present a comparison between missing data imputation solutions based on deep generative models, and we propose improvements over those methodologies. We run our experiments using known real life datasets with different characteristics, removing values at random and reconstructing them with several imputation techniques. Our results show that the presence or absence of categorical variables can alter the selection of the best model, and that some models are more stable than others after similar runs with different random number generator seeds
    corecore