1,242 research outputs found

    SHIELD: Thwarting Code Authorship Attribution

    Full text link
    Authorship attribution has become increasingly accurate, posing a serious privacy risk for programmers who wish to remain anonymous. In this paper, we introduce SHIELD to examine the robustness of different code authorship attribution approaches against adversarial code examples. We define four attacks on attribution techniques, which include targeted and non-targeted attacks, and realize them using adversarial code perturbation. We experiment with a dataset of 200 programmers from the Google Code Jam competition to validate our methods targeting six state-of-the-art authorship attribution methods that adopt a variety of techniques for extracting authorship traits from source-code, including RNN, CNN, and code stylometry. Our experiments demonstrate the vulnerability of current authorship attribution methods against adversarial attacks. For the non-targeted attack, our experiments demonstrate the vulnerability of current authorship attribution methods against the attack with an attack success rate exceeds 98.5\% accompanied by a degradation of the identification confidence that exceeds 13\%. For the targeted attacks, we show the possibility of impersonating a programmer using targeted-adversarial perturbations with a success rate ranging from 66\% to 88\% for different authorship attribution techniques under several adversarial scenarios.Comment: 12 pages, 13 figure

    Dos and Don'ts of Machine Learning in Computer Security

    Get PDF
    With the growing processing power of computing systems and the increasing availability of massive datasets, machine learning algorithms have led to major breakthroughs in many different areas. This development has influenced computer security, spawning a series of work on learning-based security systems, such as for malware detection, vulnerability discovery, and binary code analysis. Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance and render learning-based systems potentially unsuitable for security tasks and practical deployment. In this paper, we look at this problem with critical eyes. First, we identify common pitfalls in the design, implementation, and evaluation of learning-based security systems. We conduct a study of 30 papers from top-tier security conferences within the past 10 years, confirming that these pitfalls are widespread in the current security literature. In an empirical analysis, we further demonstrate how individual pitfalls can lead to unrealistic performance and interpretations, obstructing the understanding of the security problem at hand. As a remedy, we propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible. Furthermore, we identify open problems when applying machine learning in security and provide directions for further research.Comment: to appear at USENIX Security Symposium 202

    Identifying Authorship Style in Malicious Binaries: Techniques, Challenges & Datasets

    Get PDF
    Attributing a piece of malware to its creator typically requires threat intelligence. Binary attribution increases the level of difficulty as it mostly relies upon the ability to disassemble binaries to identify authorship style. Our survey explores malicious author style and the adversarial techniques used by them to remain anonymous. We examine the adversarial impact on the state-of-the-art methods. We identify key findings and explore the open research challenges. To mitigate the lack of ground truth datasets in this domain, we publish alongside this survey the largest and most diverse meta-information dataset of 15,660 malware labeled to 164 threat actor groups

    Robin: A Novel Method to Produce Robust Interpreters for Deep Learning-Based Code Classifiers

    Full text link
    Deep learning has been widely used in source code classification tasks, such as code classification according to their functionalities, code authorship attribution, and vulnerability detection. Unfortunately, the black-box nature of deep learning makes it hard to interpret and understand why a classifier (i.e., classification model) makes a particular prediction on a given example. This lack of interpretability (or explainability) might have hindered their adoption by practitioners because it is not clear when they should or should not trust a classifier's prediction. The lack of interpretability has motivated a number of studies in recent years. However, existing methods are neither robust nor able to cope with out-of-distribution examples. In this paper, we propose a novel method to produce \underline{Rob}ust \underline{in}terpreters for a given deep learning-based code classifier; the method is dubbed Robin. The key idea behind Robin is a novel hybrid structure combining an interpreter and two approximators, while leveraging the ideas of adversarial training and data augmentation. Experimental results show that on average the interpreter produced by Robin achieves a 6.11\% higher fidelity (evaluated on the classifier), 67.22\% higher fidelity (evaluated on the approximator), and 15.87x higher robustness than that of the three existing interpreters we evaluated. Moreover, the interpreter is 47.31\% less affected by out-of-distribution examples than that of LEMNA.Comment: To be published in the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    Generative adversarial copy machines

    Get PDF
    This essay explores the redistribution of expressive agency across human artists and non-human entities that inevitably occurs when artificial intelligence (AI) becomes involved in creative processes. In doing so, my focus is not on a ‘becoming-creative’ of AI in an anthropocentric sense of the term. Rather, my central argument is as follows: if AI systems are (or will be) capable of generating outputs that can satisfy requirements by which creativity is currently being evaluated, validated, and valorised, then AI inevitably disturbs prevailing aesthetic and ontological assumptions concerning anthropocentrically framed ideals of the artist figure, the work of art, and the idea of creativity as such. I will elaborate this argument by way of a close reading of Generative Adversarial Network (GAN) technology and its uses in AI art, alongside examples of ownership claims and disputes involving GAN-style AI art. Overall, the discussion links to cultural theories of AI, relevant legal theory, and posthumanist thought. It is across these contexts that I will reframe GAN systems, even when their ‘artistic’ outputs can be interpreted with reference to the concept of the singular author figure, as ‘Generative Adversarial Copy Machines.’ Ultimately, I want to propose that the disturbances effected by AI in artistic practices can pose a critical challenge to the integrity of cultural ownership models – specifically: intellectual property (IP) enclosures – which rely on an anthropocentric conceptualisation of authorship

    A Survey on Detection of LLMs-Generated Content

    Full text link
    The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, offering a guiding reference for researchers and practitioners striving to uphold the integrity of digital information in an era increasingly dominated by synthetic content. The relevant papers are summarized and will be consistently updated at https://github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.git.Comment: We will keep updating at https://github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.gi

    On the Feasibility of Adversarial Sample Creation Using the Android System API

    Get PDF
    Due to its popularity, the Android operating system is a critical target for malware attacks. Multiple security efforts have been made on the design of malware detection systems to identify potentially harmful applications. In this sense, machine learning-based systems, leveraging both static and dynamic analysis, have been increasingly adopted to discriminate between legitimate and malicious samples due to their capability of identifying novel variants of malware samples. At the same time, attackers have been developing several techniques to evade such systems, such as the generation of evasive apps, i.e., carefully-perturbed samples that can be classified as legitimate by the classifiers. Previous work has shown the vulnerability of detection systems to evasion attacks, including those designed for Android malware detection. However, most works neglected to bring the evasive attacks onto the so-called problem space, i.e., by generating concrete Android adversarial samples, which requires preserving the app’s semantics and being realistic for human expert analysis. In this work, we aim to understand the feasibility of generating adversarial samples specifically through the injection of system API calls, which are typical discriminating characteristics for malware detectors. We perform our analysis on a state-of-the-art ransomware detector that employs the occurrence of system API calls as features of its machine learning algorithm. In particular, we discuss the constraints that are necessary to generate real samples, and we use techniques inherited from interpretability to assess the impact of specific API calls to evasion. We assess the vulnerability of such a detector against mimicry and random noise attacks. Finally, we propose a basic implementation to generate concrete and working adversarial samples. The attained results suggest that injecting system API calls could be a viable strategy for attackers to generate concrete adversarial samples. However, we point out the low suitability of mimicry attacks and the necessity to build more sophisticated evasion attacks

    Copyright in generative deep learning

    Get PDF
    Machine-generated artworks are now part of the contemporary art scene: they are attracting significant investments and they are presented in exhibitions together with those created by human artists. These artworks are mainly based on generative deep learning (GDL) techniques, which have seen a formidable development and remarkable refinement in the very recent years. Given the inherent characteristics of these techniques, a series of novel legal problems arise. In this article, we consider a set of key questions in the area of GDL for the arts, including the following: is it possible to use copyrighted works as training set for generative models? How do we legally store their copies in order to perform the training process? Who (if someone) will own the copyright on the generated data? We try to answer these questions considering the law in force in both the United States and the European Union, and potential future alternatives. We then extend our analysis to code generation, which is an emerging area of GDL. Finally, we also formulate a set of practical guidelines for artists and developers working on deep learning generated art, as well as some policy suggestions for policymakers
    • …
    corecore