1,395 research outputs found

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Physical detection of misbehavior in relay systems with unreliable channel state information

    Get PDF
    We study the detection 1 of misbehavior in a Gaussian relay system, where the source transmits information to the destination with the assistance of an amplify-and-forward relay node subject to unreliable channel state information (CSI). The relay node may be potentially malicious and corrupt the network by forwarding garbled information. In this situation, misleading feedback may take place, since reliable CSI is unavailable at the source and/or the destination. By classifying the action of the relay as detectable or undetectable, we propose a novel approach that is capable of coping with any malicious attack detected and continuing to work effectively in the presence of unreliable CSI. We demonstrate that the detectable class of attacks can be successfully detected with a high probability. Meanwhile, the undetectable class of attacks does not affect the performance improvements that are achievable by cooperative diversity, even though such an attack may fool the proposed detection approach. We also extend the method to deal with the case in which there is no direct link between the source and the destination. The effectiveness of the proposed approach has been validated by numerical results
    • …
    corecore