422 research outputs found

    Mis-classified Vector Guided Softmax Loss for Face Recognition

    Full text link
    Face recognition has witnessed significant progress due to the advances of deep convolutional neural networks (CNNs), the central task of which is how to improve the feature discrimination. To this end, several margin-based (\textit{e.g.}, angular, additive and additive angular margins) softmax loss functions have been proposed to increase the feature margin between different classes. However, despite great achievements have been made, they mainly suffer from three issues: 1) Obviously, they ignore the importance of informative features mining for discriminative learning; 2) They encourage the feature margin only from the ground truth class, without realizing the discriminability from other non-ground truth classes; 3) The feature margin between different classes is set to be same and fixed, which may not adapt the situations very well. To cope with these issues, this paper develops a novel loss function, which adaptively emphasizes the mis-classified feature vectors to guide the discriminative feature learning. Thus we can address all the above issues and achieve more discriminative face features. To the best of our knowledge, this is the first attempt to inherit the advantages of feature margin and feature mining into a unified loss function. Experimental results on several benchmarks have demonstrated the effectiveness of our method over state-of-the-art alternatives.Comment: Accepted by AAAI2020 as Oral presentation. arXiv admin note: substantial text overlap with arXiv:1812.1131

    Deep Networks with Internal Selective Attention through Feedback Connections

    Full text link
    Traditional convolutional neural networks (CNN) are stationary and feedforward. They neither change their parameters during evaluation nor use feedback from higher to lower layers. Real brains, however, do. So does our Deep Attention Selective Network (dasNet) architecture. DasNets feedback structure can dynamically alter its convolutional filter sensitivities during classification. It harnesses the power of sequential processing to improve classification performance, by allowing the network to iteratively focus its internal attention on some of its convolutional filters. Feedback is trained through direct policy search in a huge million-dimensional parameter space, through scalable natural evolution strategies (SNES). On the CIFAR-10 and CIFAR-100 datasets, dasNet outperforms the previous state-of-the-art model.Comment: 13 pages, 3 figure

    Multi-Scale Body-Part Mask Guided Attention for Person Re-identification

    Full text link
    Person re-identification becomes a more and more important task due to its wide applications. In practice, person re-identification still remains challenging due to the variation of person pose, different lighting, occlusion, misalignment, background clutter, etc. In this paper, we propose a multi-scale body-part mask guided attention network (MMGA), which jointly learns whole-body and part body attention to help extract global and local features simultaneously. In MMGA, body-part masks are used to guide the training of corresponding attention. Experiments show that our proposed method can reduce the negative influence of variation of person pose, misalignment and background clutter. Our method achieves rank-1/mAP of 95.0%/87.2% on the Market1501 dataset, 89.5%/78.1% on the DukeMTMC-reID dataset, outperforming current state-of-the-art methods

    Adversarial Attacks and Defences: A Survey

    Full text link
    Deep learning has emerged as a strong and efficient framework that can be applied to a broad spectrum of complex learning problems which were difficult to solve using the traditional machine learning techniques in the past. In the last few years, deep learning has advanced radically in such a way that it can surpass human-level performance on a number of tasks. As a consequence, deep learning is being extensively used in most of the recent day-to-day applications. However, security of deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify the output. In recent times, different types of adversaries based on their threat model leverage these vulnerabilities to compromise a deep learning system where adversaries have high incentives. Hence, it is extremely important to provide robustness to deep learning algorithms against these adversaries. However, there are only a few strong countermeasures which can be used in all types of attack scenarios to design a robust deep learning system. In this paper, we attempt to provide a detailed discussion on different types of adversarial attacks with various threat models and also elaborate the efficiency and challenges of recent countermeasures against them

    BoundaryFace: A mining framework with noise label self-correction for Face Recognition

    Full text link
    Face recognition has made tremendous progress in recent years due to the advances in loss functions and the explosive growth in training sets size. A properly designed loss is seen as key to extract discriminative features for classification. Several margin-based losses have been proposed as alternatives of softmax loss in face recognition. However, two issues remain to consider: 1) They overlook the importance of hard sample mining for discriminative learning. 2) Label noise ubiquitously exists in large-scale datasets, which can seriously damage the model's performance. In this paper, starting from the perspective of decision boundary, we propose a novel mining framework that focuses on the relationship between a sample's ground truth class center and its nearest negative class center. Specifically, a closed-set noise label self-correction module is put forward, making this framework work well on datasets containing a lot of label noise. The proposed method consistently outperforms SOTA methods in various face recognition benchmarks. Training code has been released at https://github.com/SWJTU-3DVision/BoundaryFace.Comment: ECCV 2022. Code available at https://github.com/SWJTU-3DVision/BoundaryFac

    CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition

    Full text link
    As an emerging topic in face recognition, designing margin-based loss functions can increase the feature margin between different classes for enhanced discriminability. More recently, the idea of mining-based strategies is adopted to emphasize the misclassified samples, achieving promising results. However, during the entire training process, the prior methods either do not explicitly emphasize the sample based on its importance that renders the hard samples not fully exploited; or explicitly emphasize the effects of semi-hard/hard samples even at the early training stage that may lead to convergence issue. In this work, we propose a novel Adaptive Curriculum Learning loss (CurricularFace) that embeds the idea of curriculum learning into the loss function to achieve a novel training strategy for deep face recognition, which mainly addresses easy samples in the early training stage and hard ones in the later stage. Specifically, our CurricularFace adaptively adjusts the relative importance of easy and hard samples during different training stages. In each stage, different samples are assigned with different importance according to their corresponding difficultness. Extensive experimental results on popular benchmarks demonstrate the superiority of our CurricularFace over the state-of-the-art competitors.Comment: CVPR 202

    Multimodal Recurrent Neural Networks with Information Transfer Layers for Indoor Scene Labeling

    Full text link
    This paper proposes a new method called Multimodal RNNs for RGB-D scene semantic segmentation. It is optimized to classify image pixels given two input sources: RGB color channels and Depth maps. It simultaneously performs training of two recurrent neural networks (RNNs) that are crossly connected through information transfer layers, which are learnt to adaptively extract relevant cross-modality features. Each RNN model learns its representations from its own previous hidden states and transferred patterns from the other RNNs previous hidden states; thus, both model-specific and crossmodality features are retained. We exploit the structure of quad-directional 2D-RNNs to model the short and long range contextual information in the 2D input image. We carefully designed various baselines to efficiently examine our proposed model structure. We test our Multimodal RNNs method on popular RGB-D benchmarks and show how it outperforms previous methods significantly and achieves competitive results with other state-of-the-art works.Comment: 15 pages, 13 figures, IEEE TMM 201

    Learning from Higher-Layer Feature Visualizations

    Full text link
    Driven by the goal to enable sleep apnea monitoring and machine learning-based detection at home with small mobile devices, we investigate whether interpretation-based indirect knowledge transfer can be used to create classifiers with acceptable performance. Interpretation-based indirect knowledge transfer means that a classifier (student) learns from a synthetic dataset based on the knowledge representation from an already trained Deep Network (teacher). We use activation maximization to generate visualizations and create a synthetic dataset to train the student classifier. This approach has the advantage that student classifiers can be trained without access to the original training data. With experiments we investigate the feasibility of interpretation-based indirect knowledge transfer and its limitations. The student achieves an accuracy of 97.8% on MNIST (teacher accuracy: 99.3%) with a similar smaller architecture to that of the teacher. The student classifier achieves an accuracy of 86.1% and 89.5% for a subset of the Apnea-ECG dataset (teacher: 89.5% and 91.1%, respectively)

    Deep Boosting Multi-Modal Ensemble Face Recognition with Sample-Level Weighting

    Full text link
    Deep convolutional neural networks have achieved remarkable success in face recognition (FR), partly due to the abundant data availability. However, the current training benchmarks exhibit an imbalanced quality distribution; most images are of high quality. This poses issues for generalization on hard samples since they are underrepresented during training. In this work, we employ the multi-model boosting technique to deal with this issue. Inspired by the well-known AdaBoost, we propose a sample-level weighting approach to incorporate the importance of different samples into the FR loss. Individual models of the proposed framework are experts at distinct levels of sample hardness. Therefore, the combination of models leads to a robust feature extractor without losing the discriminability on the easy samples. Also, for incorporating the sample hardness into the training criterion, we analytically show the effect of sample mining on the important aspects of current angular margin loss functions, i.e., margin and scale. The proposed method shows superior performance in comparison with the state-of-the-art algorithms in extensive experiments on the CFP-FP, LFW, CPLFW, CALFW, AgeDB, TinyFace, IJB-B, and IJB-C evaluation datasets.Comment: 2023 IEEE International Joint Conference on Biometrics (IJCB

    Cartoon Face Recognition: A Benchmark Dataset

    Full text link
    Recent years have witnessed increasing attention in cartoon media, powered by the strong demands of industrial applications. As the first step to understand this media, cartoon face recognition is a crucial but less-explored task with few datasets proposed. In this work, we first present a new challenging benchmark dataset, consisting of 389,678 images of 5,013 cartoon characters annotated with identity, bounding box, pose, and other auxiliary attributes. The dataset, named iCartoonFace, is currently the largest-scale, high-quality, richannotated, and spanning multiple occurrences in the field of image recognition, including near-duplications, occlusions, and appearance changes. In addition, we provide two types of annotations for cartoon media, i.e., face recognition, and face detection, with the help of a semi-automatic labeling algorithm. To further investigate this challenging dataset, we propose a multi-task domain adaptation approach that jointly utilizes the human and cartoon domain knowledge with three discriminative regularizations. We hence perform a benchmark analysis of the proposed dataset and verify the superiority of the proposed approach in the cartoon face recognition task. We believe this public availability will attract more research attention in broad practical application scenarios.Comment: 9 papers, 6 figure
    corecore