470 research outputs found

    Log-Gabor Orientation with Run-Length Code based Fingerprint Feature Extraction Approach

    Get PDF
    This paper aims to design and implement Log-Gabor filtering with Run-length Code based feature Extraction technique. Since minutiae extraction is an essential and core process of fingerprint Identification and Authentication systems, the minutiae features are enhanced in each orientation using Log-Gabor filter and features are extracted using the proposed method. Frequency domain is derived using FFT and they are enhanced by Log-Gabor filter for each orientation. In our method six orientations are considered; binarization, thinning are also followed. Fingerprint features are extracted using proposed method which possesses labeling and Run-length Coding technique. Our method is tested with the benchmark Databases and real time images and the results show the better performance and lower error rate

    THRIVE: Threshold Homomorphic encryption based secure and privacy preserving bIometric VErification system

    Get PDF
    In this paper, we propose a new biometric verification and template protection system which we call the THRIVE system. The system includes novel enrollment and authentication protocols based on threshold homomorphic cryptosystem where the private key is shared between a user and the verifier. In the THRIVE system, only encrypted binary biometric templates are stored in the database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during the authentication stage. The THRIVE system is designed for the malicious model where the cheating party may arbitrarily deviate from the protocol specification. Since threshold homomorphic encryption scheme is used, a malicious database owner cannot perform decryption on encrypted templates of the users in the database. Therefore, security of the THRIVE system is enhanced using a two-factor authentication scheme involving the user's private key and the biometric data. We prove security and privacy preservation capability of the proposed system in the simulation-based model with no assumption. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form but she needs to proof her physical presence by using biometrics. The system can be used with any biometric modality and biometric feature extraction scheme whose output templates can be binarized. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biohash vectors on a desktop PC running with quad-core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real life applications

    Privacy Protection in Distributed Fingerprint-based Authentication

    Full text link
    Biometric authentication is getting increasingly popular due to the convenience of using unique individual traits, such as fingerprints, palm veins, irises. Especially fingerprints are widely used nowadays due to the availability and low cost of fingerprint scanners. To avoid identity theft or impersonation, fingerprint data is typically stored locally, e.g., in a trusted hardware module, in a single device that is used for user enrollment and authentication. Local storage, however, limits the ability to implement distributed applications, in which users can enroll their fingerprint once and use it to access multiple physical locations and mobile applications afterwards. In this paper, we present a distributed authentication system that stores fingerprint data in a server or cloud infrastructure in a privacy-preserving way. Multiple devices can be connected and perform user enrollment or verification. To secure the privacy and integrity of sensitive data, we employ a cryptographic construct called fuzzy vault. We highlight challenges in implementing fuzzy vault-based authentication, for which we propose and compare alternative solutions. We conduct a security analysis of our biometric cryptosystem, and as a proof of concept, we build an authentication system for access control using resource-constrained devices (Raspberry Pis) connected to fingerprint scanners and the Microsoft Azure cloud environment. Furthermore, we evaluate the fingerprint matching algorithm against the well-known FVC2006 database and show that it can achieve comparable accuracy to widely-used matching techniques that are not designed for privacy, while remaining efficient with an authentication time of few seconds.Comment: This is an extended version of the paper with the same title which has been accepted for publication at the Workshop on Privacy in the Electronic Society (WPES 2019

    FINGERPRINT RECOGNITION SYSTEM

    Get PDF
    This project is to design a fingerprint recognition system for security purposes. It will also explore and suggest some solution to the improvement to the existing fingerprint system. Security system that uses a pin code or access card can be easily misused or mishandled. A pin code can be cracked using some hacker software while an access card can easily be stolen or misplaced. Thus, these security methods are very vulnerable to hackers and criminals. Instead, a fingerprint is unique to every person and due to the fact that no two people have the same fingerprint pattern, it makes the fingerprint a very good resource in a security system. The aim of this project is to focus on the concept and methodology of the fingerprint recognition system. By grasping the concept and method of the fingerprint recognition flow, a prototype is developed that will compare an input fingerprint with its predefined template. The system should be able to compare and decide if the input fingerprint is the same as the predefined template. The output of the first stage is a preprocessing stage. There are two stages involved in preprocessing which is the image enhancement and image skeletonization. Fourier transfonn and histogram equalization is utilized to enhance the low quality image to a better image so that the feature extraction process will run smoothly. The second stage of the project is to define the orientation, ROI extraction and minutia extraction. The matching sequence and the angle orientation problem were resolved

    The Assessment of Fingerprint Quality for a More Effective Match Score in Minutiae-Based Matching Performers

    Get PDF
    One of the most common types of evidence recovered from a crime scene are latent fingerprints, however these impressions are often of low quality. The quality of a latent fingerprint is described as the degree to which the ridge details can be observed. If the quality of the latent fingerprint is very clear, a minutiae-based matching algorithm with automatic extraction may detect and utilize the minutiae that are truly present in the fingerprint. However, if the impression is of poor quality, the minutiae-based matching algorithm\u27s automatic extraction may detect fewer features and could completely miss features resulting in the return of an unrelated candidate. The aim of this research was to determine a method to improve the match score of latent fingerprints by removing the bad quality regions, where both a subjective and objective methods were utilized. The subjective method utilized the predetermined quality categories of good, bad or ugly to assign a latent fingerprint. After classification, each impression was processed by AdobeRTM PhotoshopRTM and four quality areas were serially removed. In the objective method, each latent fingerprint was assessed with NFIQ algorithm and then MINDTCT algorithm. The MINDTCT algorithm provided a quality map that was used to remove successive portions of each latent fingerprint. The resulting new images from both methods were compared to a database using the two different minutiae-based matching algorithms: AFIX TrackerRTM and BOZORTH3.;The results were examined utilizing the statistical methods of receiver operator characteristic (ROC) curves, area under the ROC curve (AUC), cumulative match characteristic (CMC) curve, Wilcoxon signed-rank test, Spearman\u27s rank correlation and the comparison of the removal methods. ROC curves and the resulting AUC were able to determine that the AFIX TrackerRTM program is a reliable performer with high AUC values, while the BOZORTH3 minutiae-based algorithm did not perform well with low AUC scores of around 0.5. The results produced from the CMC curves showed that the subjective method produced higher rank 1 and top 10 rank identification than the objective method, contrary to what was hypothesized. The correlation scores showed the manual and automatic extraction were weakly correlated to one another. However, a very weak to no correlation between the algorithms of the BOZORTH3 and AFIX Tracker R was observed. The comparison between the subjective and objective methods of removal showed the examiner allowed for a more conservative removal of the fingerprint than the objective method. With this result in connection with the CMC curve results shows that being more conservative produces higher rank 1 and top ten rank identification scores

    A Biometric Approach to Prevent False Use of IDs

    Get PDF
    What is your username? What is your password? What is your PIN number? These are some of the commonly used key questions users need to answer accurately in order to verify their identity and gain access to systems and their own data. Passwords, Personal Identification Numbers (PINs) and ID cards are different means of tokens used to identify a person, but these can be forgotten, stolen or lost. Currently, University of Hertfordshire (UH) carries out identity checks by checking the photograph on an ID card during exams. Other processes such as attendance monitoring and door access control require tapping the ID card on a reader. These methods can cause issues such as unauthorised use of ID card on attendance system and door access system if ID card is found, lost or borrowed. During exams, this could lead to interruptions when carrying out manual checks. As the invigilator carries out checks whilst the student is writing an exam, it is often difficult to see the student’s face as they face down whilst writing the exam. They cannot be disturbed for the ID check process. Students are also required to sign a manual register as they walk into the exam room. This process is time consuming. A more robust approach to identification of individuals that can avoid the above mentioned limitations of the traditional means, is the use of biometrics. Fingerprint was the first biometric modality that has been used. In comparison to other biometric modalities such as signature and face recognition, fingerprint is highly unique, accepted and leads to a more accurate matching result. Considering these properties of fingerprint biometrics, it has been explored in the research study presented in this thesis to enhance the efficiency and the reliability of the University’s exam process. This thesis focuses on using fingerprint recognition technology in a novel approach to check identity for exams in a University environment. Identifying a user using fingerprints is not the only aim of this project. Convenience and user experience play vital roles in this project whilst improving speed and processes at UH

    Latent Fingerprint Recognition: Fusion of Local and Global Embeddings

    Full text link
    One of the most challenging problems in fingerprint recognition continues to be establishing the identity of a suspect associated with partial and smudgy fingerprints left at a crime scene (i.e., latent prints or fingermarks). Despite the success of fixed-length embeddings for rolled and slap fingerprint recognition, the features learned for latent fingerprint matching have mostly been limited to local minutiae-based embeddings and have not directly leveraged global representations for matching. In this paper, we combine global embeddings with local embeddings for state-of-the-art latent to rolled matching accuracy with high throughput. The combination of both local and global representations leads to improved recognition accuracy across NIST SD 27, NIST SD 302, MSP, MOLF DB1/DB4, and MOLF DB2/DB4 latent fingerprint datasets for both closed-set (84.11%, 54.36%, 84.35%, 70.43%, 62.86% rank-1 retrieval rate, respectively) and open-set (0.50, 0.74, 0.44, 0.60, 0.68 FNIR at FPIR=0.02, respectively) identification scenarios on a gallery of 100K rolled fingerprints. Not only do we fuse the complimentary representations, we also use the local features to guide the global representations to focus on discriminatory regions in two fingerprint images to be compared. This leads to a multi-stage matching paradigm in which subsets of the retrieved candidate lists for each probe image are passed to subsequent stages for further processing, resulting in a considerable reduction in latency (requiring just 0.068 ms per latent to rolled comparison on a AMD EPYC 7543 32-Core Processor, roughly 15K comparisons per second). Finally, we show the generalizability of the fused representations for improving authentication accuracy across several rolled, plain, and contactless fingerprint datasets
    • …
    corecore