5,093 research outputs found

    Stochastic domination: the contact process, Ising models and FKG measures

    Get PDF
    We prove for the contact process on ZdZ^d, and many other graphs, that the upper invariant measure dominates a homogeneous product measure with large density if the infection rate Ξ»\lambda is sufficiently large. As a consequence, this measure percolates if the corresponding product measure percolates. We raise the question of whether domination holds in the symmetric case for all infinite graphs of bounded degree. We study some asymmetric examples which we feel shed some light on this question. We next obtain necessary and sufficient conditions for domination of a product measure for ``downward'' FKG measures. As a consequence of this general result, we show that the plus and minus states for the Ising model on ZdZ^d dominate the same set of product measures. We show that this latter fact fails completely on the homogenous 3-ary tree. We also provide a different distinction between ZdZ^d and the homogenous 3-ary tree concerning stochastic domination and Ising models; while it is known that the plus states for different temperatures on ZdZ^d are never stochastically ordered, on the homogenous 3-ary tree, almost the complete opposite is the case. Next, we show that on ZdZ^d, the set of product measures which the plus state for the Ising model dominates is strictly increasing in the temperature. Finally, we obtain a necessary and sufficient condition for a finite number of variables, which are both FKG and exchangeable, to dominate a given product measure.Comment: 27 page

    Upper bounds on the k-forcing number of a graph

    Full text link
    Given a simple undirected graph GG and a positive integer kk, the kk-forcing number of GG, denoted Fk(G)F_k(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored vertex has at most kk non-colored neighbors, then each of its non-colored neighbors becomes colored. When k=1k=1, this is equivalent to the zero forcing number, usually denoted with Z(G)Z(G), a recently introduced invariant that gives an upper bound on the maximum nullity of a graph. In this paper, we give several upper bounds on the kk-forcing number. Notable among these, we show that if GG is a graph with order nβ‰₯2n \ge 2 and maximum degree Ξ”β‰₯k\Delta \ge k, then Fk(G)≀(Ξ”βˆ’k+1)nΞ”βˆ’k+1+min⁑{Ξ΄,k}F_k(G) \le \frac{(\Delta-k+1)n}{\Delta - k + 1 +\min{\{\delta,k\}}}. This simplifies to, for the zero forcing number case of k=1k=1, Z(G)=F1(G)≀ΔnΞ”+1Z(G)=F_1(G) \le \frac{\Delta n}{\Delta+1}. Moreover, when Ξ”β‰₯2\Delta \ge 2 and the graph is kk-connected, we prove that Fk(G)≀(Ξ”βˆ’2)n+2Ξ”+kβˆ’2F_k(G) \leq \frac{(\Delta-2)n+2}{\Delta+k-2}, which is an improvement when k≀2k\leq 2, and specializes to, for the zero forcing number case, Z(G)=F1(G)≀(Ξ”βˆ’2)n+2Ξ”βˆ’1Z(G)= F_1(G) \le \frac{(\Delta -2)n+2}{\Delta -1}. These results resolve a problem posed by Meyer about regular bipartite circulant graphs. Finally, we present a relationship between the kk-forcing number and the connected kk-domination number. As a corollary, we find that the sum of the zero forcing number and connected domination number is at most the order for connected graphs.Comment: 15 pages, 0 figure

    Maximum Number of Minimum Dominating and Minimum Total Dominating Sets

    Full text link
    Given a connected graph with domination (or total domination) number \gamma>=2, we ask for the maximum number m_\gamma and m_{\gamma,T} of dominating and total dominating sets of size \gamma. An exact answer is provided for \gamma=2and lower bounds are given for \gamma>=3.Comment: 6 page

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and XβŠ†VX\subseteq V, if Ξ΄X(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set MβŠ†VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if Ξ΄M(v)β‰₯Ξ΄V(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:Vβ†’{βˆ’1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=βˆ‘v∈N(v)f(v)β‰₯tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set SβŠ†VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if Ξ΄S(v)β‰₯Ξ΄Vβˆ’S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016

    New bounds on the signed total domination number of graphs

    Full text link
    In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turan, we present a sharp lower bound on this parameter for graphs with no complete graph of order r+1 as a subgraph. Also, we prove that n-2(s-s') is an upper bound on the signed total domination number of any tree of order n with s support vertices and s' support vertives of degree two. Moreover, we characterize all trees attainig this bound.Comment: This paper contains 11 pages and one figur
    • …
    corecore