776 research outputs found

    Bidirectional Growth based Mining and Cyclic Behaviour Analysis of Web Sequential Patterns

    Get PDF
    Web sequential patterns are important for analyzing and understanding users behaviour to improve the quality of service offered by the World Wide Web. Web Prefetching is one such technique that utilizes prefetching rules derived through Cyclic Model Analysis of the mined Web sequential patterns. The more accurate the prediction and more satisfying the results of prefetching if we use a highly efficient and scalable mining technique such as the Bidirectional Growth based Directed Acyclic Graph. In this paper, we propose a novel algorithm called Bidirectional Growth based mining Cyclic behavior Analysis of web sequential Patterns (BGCAP) that effectively combines these strategies to generate prefetching rules in the form of 2-sequence patterns with Periodicity and threshold of Cyclic Behaviour that can be utilized to effectively prefetch Web pages, thus reducing the users perceived latency. As BGCAP is based on Bidirectional pattern growth, it performs only (log n+1) levels of recursion for mining n Web sequential patterns. Our experimental results show that prefetching rules generated using BGCAP is 5-10 percent faster for different data sizes and 10-15% faster for a fixed data size than TD-Mine. In addition, BGCAP generates about 5-15 percent more prefetching rules than TD-Mine.Comment: 19 page

    Extraction and Analysis of Facebook Friendship Relations

    Get PDF
    Online Social Networks (OSNs) are a unique Web and social phenomenon, affecting tastes and behaviors of their users and helping them to maintain/create friendships. It is interesting to analyze the growth and evolution of Online Social Networks both from the point of view of marketing and other of new services and from a scientific viewpoint, since their structure and evolution may share similarities with real-life social networks. In social sciences, several techniques for analyzing (online) social networks have been developed, to evaluate quantitative properties (e.g., defining metrics and measures of structural characteristics of the networks) or qualitative aspects (e.g., studying the attachment model for the network evolution, the binary trust relationships, and the link prediction problem).\ud However, OSN analysis poses novel challenges both to Computer and Social scientists. We present our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations, is restricted; thus, we acquired the necessary information directly from the front-end of the Web site, in order to reconstruct a sub-graph representing anonymous interconnections among a significant subset of users. We describe our ad-hoc, privacy-compliant crawler for Facebook data extraction. To minimize bias, we adopt two different graph mining techniques: breadth-first search (BFS) and rejection sampling. To analyze the structural properties of samples consisting of millions of nodes, we developed a specific tool for analyzing quantitative and qualitative properties of social networks, adopting and improving existing Social Network Analysis (SNA) techniques and algorithms

    Performance tuning and cost discovery of mobile web-based applications

    Get PDF
    When considering the addition of a mobile presentation channel to an existing web-based application, project managers should know how the mobile channel|s characteristics will impact the user experience and the cost of using the application, even before development begins. The PETTICOAT (Performance Tuning and cost discovery of mobile web-based Applications) approach presented here provides decision-makers with indicators on the economical feasibility of mobile channel development. In a nutshell, it involves analysing interaction patterns on the existing stationary channel, identifying key business processes among them, measuring the time and data volume incurred in their execution, and then simulating how the same interaction patterns would run when subjected to the frame conditions of a mobile channel. As a result of the simulation, we then gain time and volume projections for those interaction patterns that allow us to estimate the costs incurred by executing certain business processes on different mobile channels

    Web Caching and Prefetching with Cyclic Model Analysis of Web Object Sequences

    Get PDF
    Web caching is the process in which web objects are temporarily stored to reduce bandwidth consumption, server load and latency. Web prefetching is the process of fetching web objects from the server before they are actually requested by the client. Integration of caching and prefetching can be very beneficial as the two techniques can support each other. By implementing this integrated scheme in a client-side proxy, the perceived latency can be reduced for not one but many users. In this paper, we propose a new integrated caching and prefetching policy called the WCP-CMA which makes use of a profit-driven caching policy that takes into account the periodicity and cyclic behaviour of the web access sequences for deriving prefetching rules. Our experimental results have shown a 10%-15% increase in the hit ratios of the cached objects and 5%-10% decrease in delay compared to the existing schem

    Web Usage Mining to Extract Knowledge for Modelling Users of Taiwan Travel Recommendation Mobile APP

    Get PDF
    This work presents the design of a web mining system to understand the navigational behavior of passengers in developed Taiwan travel recommendation mobile app that provides four main functions including recommend by location , hot topic , nearby scenic spots information , my favorite and 2650 scenic spots. To understand passenger navigational patterns, log data from actual cases of app were collected and analysed by web mining system. This system analysed 58981 sessions of 1326 users for the month of June, 2014. Sequential profiles for passenger navigational patterns were captured by applying sequence-based representation schemes in association with Markov models and enhanced K-mean clustering algorithms for sequence behavior mining cluster patterns. The navigational cycle, time, function numbers, and the depth and extent (range) of app were statistically analysed. The analysis results can be used improved the passengers\u27 acceptance of app and help generate potential personalization recommendations for achieving an intelligent travel recommendation service

    Cost Simulation and Performance Optimization of Web-based Applications on Mobile Channels

    Get PDF
    When considering the addition of a mobile presentation channel to an existing web-based application, a key question that has to be answered even before development begins is how the mobile channel's characteristics will impact the user experience and the cost of using the application. If either of these factors is outside acceptable limits, economical considerations may forbid adding the channels, even if it would be feasible from a purely technical perspective. Both of these factors depend considerably on two metrics: The time required to transmit data over the mobile network, and the volume transmitted. The PETTICOAT method presented in this paper uses the dialog flow model and web server log files of an existing application to identify typical interaction sequences and to compile volume statistics, which are then run through a tool that simulates the volume and time that would be incurred by executing the interaction sequences on a mobile channel. From the simulated volume and time data, we can then calculate the cost of accessing the application on a mobile channel, and derive suitable approaches for optimizing cost and response times

    Mining frequent sequential patterns in data streams using SSM-algorithm.

    Get PDF
    Frequent sequential mining is the process of discovering frequent sequential patterns in data sequences as found in applications like web log access sequences. In data stream applications, data arrive at high speed rates in a continuous flow. Data stream mining is an online process different from traditional mining. Traditional mining algorithms work on an entire static dataset in order to obtain results while data stream mining algorithms work with continuously arriving data streams. With rapid change in technology, there are many applications that take data as continuous streams. Examples include stock tickers, network traffic measurements, click stream data, data feeds from sensor networks, and telecom call records. Mining frequent sequential patterns on data stream applications contend with many challenges such as limited memory for unlimited data, inability of algorithms to scan infinitely flowing original dataset more than once and to deliver current and accurate result on demand. This thesis proposes SSM-Algorithm (sequential stream mining-algorithm) that delivers frequent sequential patterns in data streams. The concept of this work came from FP-Stream algorithm that delivers time sensitive frequent patterns. Proposed SSM-Algorithm outperforms FP-Stream algorithm by the use of a hash based and two efficient tree based data structures. All incoming streams are handled dynamically to improve memory usage. SSM-Algorithm maintains frequent sequences incrementally and delivers most current result on demand. The introduced algorithm can be deployed to analyze e-commerce data where the primary source of the data is click stream data. (Abstract shortened by UMI.)Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .M668. Source: Masters Abstracts International, Volume: 44-03, page: 1409. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Modelling Web Usage in a Changing Environment

    Get PDF
    Eiben, A.E. [Promotor]Kowalczyk, W. [Copromotor

    Analysis of Clickstream Data

    Get PDF
    This thesis is concerned with providing further statistical development in the area of web usage analysis to explore web browsing behaviour patterns. We received two data sources: web log files and operational data files for the websites, which contained information on online purchases. There are many research question regarding web browsing behaviour. Specifically, we focused on the depth-of-visit metric and implemented an exploratory analysis of this feature using clickstream data. Due to the large volume of data available in this context, we chose to present effect size measures along with all statistical analysis of data. We introduced two new robust measures of effect size for two-sample comparison studies for Non-normal situations, specifically where the difference of two populations is due to the shape parameter. The proposed effect sizes perform adequately for non-normal data, as well as when two distributions differ from shape parameters. We will focus on conversion analysis, to investigate the causal relationship between the general clickstream information and online purchasing using a logistic regression approach. The aim is to find a classifier by assigning the probability of the event of online shopping in an e-commerce website. We also develop the application of a mixture of hidden Markov models (MixHMM) to model web browsing behaviour using sequences of web pages viewed by users of an e-commerce website. The mixture of hidden Markov model will be performed in the Bayesian context using Gibbs sampling. We address the slow mixing problem of using Gibbs sampling in high dimensional models, and use the over-relaxed Gibbs sampling, as well as forward-backward EM algorithm to obtain an adequate sample of the posterior distributions of the parameters. The MixHMM provides an advantage of clustering users based on their browsing behaviour, and also gives an automatic classification of web pages based on the probability of observing web page by visitors in the website
    • …
    corecore