4,089 research outputs found

    Combined artificial bee colony algorithm and machine learning techniques for prediction of online consumer repurchase intention

    Get PDF
    A novel paradigm in the service sector i.e. services through the web is a progressive mechanism for rendering offerings over diverse environments. Internet provides huge opportunities for companies to provide personalized online services to their customers. But prompt novel web services introduction may unfavorably affect the quality and user gratification. Subsequently, prediction of the consumer intention is of supreme importance in selecting the web services for an application. The aim of study is to predict online consumer repurchase intention and to achieve this objective a hybrid approach which a combination of machine learning techniques and Artificial Bee Colony (ABC) algorithm has been used. The study is divided into three phases. Initially, shopping mall and consumer characteristic’s for repurchase intention has been identified through extensive literature review. Secondly, ABC has been used to determine the feature selection of consumers’ characteristics and shopping malls’ attributes (with > 0.1 threshold value) for the prediction model. Finally, validation using K-fold cross has been employed to measure the best classification model robustness. The classification models viz., Decision Trees (C5.0), AdaBoost, Random Forest (RF), Support Vector Machine (SVM) and Neural Network (NN), are utilized for prediction of consumer purchase intention. Performance evaluation of identified models on training-testing partitions (70-30%) of the data set, shows that AdaBoost method outperforms other classification models with sensitivity and accuracy of 0.95 and 97.58% respectively, on testing data set. This study is a revolutionary attempt that considers both, shopping mall and consumer characteristics in examine the consumer purchase intention.N/

    Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application

    Full text link
    [EN] The study presents some results of customer pathsÂż analysis in a shopping mall. Bluetooth-based technology is used to collect data. The event log containing spatiotemporal information is analyzed with process mining. Process mining is a technique that enables one to see the whole process contrary to data-centric methods. The use of process mining can provide a readily-understandable view of the customer paths. We installed iBeacon devices, a Bluetooth-based positioning system, in the shopping mall. During December 2017 and January and February 2018, close to 8000 customer data were captured. We aim to investigate customer behaviors regarding gender by using their paths. We can determine the gender of customers if they go to the menÂżs bathroom or womenÂżs bathroom. Since the study has a comprehensive scope, we focused on male and female customersÂż behaviors. This study shows that male and female customers have different behaviors. Their duration and paths, in general, are not similar. In addition, the study shows that the process mining technique is a viable way to analyze customer behavior using Bluetooth-based technology.Dogan, O.; Bayo-Monton, JL.; FernĂĄndez Llatas, C.; Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors. 19(3):1-20. https://doi.org/10.3390/s19030557S120193Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005Merad, D., Aziz, K.-E., Iguernaissi, R., Fertil, B., & Drap, P. (2016). Tracking multiple persons under partial and global occlusions: Application to customers’ behavior analysis. Pattern Recognition Letters, 81, 11-20. doi:10.1016/j.patrec.2016.04.011Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035Hwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering, 47(2), 237-267. doi:10.1016/s0169-023x(03)00066-1Ou-Yang, C., & Winarjo, H. (2011). Petri-net integration – An approach to support multi-agent process mining. Expert Systems with Applications, 38(4), 4039-4051. doi:10.1016/j.eswa.2010.09.066Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., 
 Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Funkner, A. A., Yakovlev, A. N., & Kovalchuk, S. V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records. Procedia Computer Science, 119, 234-244. doi:10.1016/j.procs.2017.11.181Jans, M., Alles, M., & Vasarhelyi, M. (2013). The case for process mining in auditing: Sources of value added and areas of application. International Journal of Accounting Information Systems, 14(1), 1-20. doi:10.1016/j.accinf.2012.06.015Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047pDe Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & AlmazĂĄn, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015Kang, L., & Hansen, M. (2017). Behavioral analysis of airline scheduled block time adjustment. Transportation Research Part E: Logistics and Transportation Review, 103, 56-68. doi:10.1016/j.tre.2017.04.004Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. P. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251. doi:10.1016/j.eswa.2015.07.040FernĂĄndez-Llatas, C., Benedi, J.-M., GarcĂ­a-GĂłmez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003M. Valle, A., A.P. Santos, E., & R. Loures, E. (2017). Applying process mining techniques in software process appraisals. Information and Software Technology, 87, 19-31. doi:10.1016/j.infsof.2017.01.004Juhaƈåk, L., Zounek, J., & RohlĂ­kovĂĄ, L. (2019). Using process mining to analyze students’ quiz-taking behavior patterns in a learning management system. Computers in Human Behavior, 92, 496-506. doi:10.1016/j.chb.2017.12.015Sedrakyan, G., De Weerdt, J., & Snoeck, M. (2016). Process-mining enabled feedback: «Tell me what I did wrong» vs. «tell me how to do it right». Computers in Human Behavior, 57, 352-376. doi:10.1016/j.chb.2015.12.040Schoor, C., & Bannert, M. (2012). Exploring regulatory processes during a computer-supported collaborative learning task using process mining. Computers in Human Behavior, 28(4), 1321-1331. doi:10.1016/j.chb.2012.02.016Werner, M., & Gehrke, N. (2015). Multilevel Process Mining for Financial Audits. IEEE Transactions on Services Computing, 8(6), 820-832. doi:10.1109/tsc.2015.2457907De Weerdt, J., Schupp, A., Vanderloock, A., & Baesens, B. (2013). Process Mining for the multi-faceted analysis of business processes—A case study in a financial services organization. Computers in Industry, 64(1), 57-67. doi:10.1016/j.compind.2012.09.010Herbert, L., Hansen, Z. N. L., Jacobsen, P., & Cunha, P. (2014). Evolutionary Optimization of Production Materials Workflow Processes. Procedia CIRP, 25, 53-60. doi:10.1016/j.procir.2014.10.010Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008Yoshimura, Y., Krebs, A., & Ratti, C. (2017). Noninvasive Bluetooth Monitoring of Visitors’ Length of Stay at the Louvre. IEEE Pervasive Computing, 16(2), 26-34. doi:10.1109/mprv.2017.33Cao, Q., Jones, D. R., & Sheng, H. (2014). Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information & Management, 51(2), 225-239. doi:10.1016/j.im.2013.11.007Larson, J. S., Bradlow, E. T., & Fader, P. S. (2005). An exploratory look at supermarket shopping paths. International Journal of Research in Marketing, 22(4), 395-414. doi:10.1016/j.ijresmar.2005.09.005Fernandez-Llatas, C., Martinez-Millana, A., Martinez-Romero, A., Benedi, J. M., & Traver, V. (2015). Diabetes care related process modelling using Process Mining techniques. Lessons learned in the application of Interactive Pattern Recognition: coping with the Spaghetti Effect. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318809Conca, T., Saint-Pierre, C., Herskovic, V., SepĂșlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884De Medeiros, A. K. A., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi:10.1007/s10618-006-0061-7Heyer, L. J. (1999). Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research, 9(11), 1106-1115. doi:10.1101/gr.9.11.1106Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68. doi:10.1016/j.eswa.2005.09.00

    Mining Consumer Knowledge from Shopping Experience: TV Shopping Industry

    Get PDF
    [[notice]]èŁœæ­ŁćźŒ

    Perfect and Dynamic Segmentation via the Internet

    Get PDF
    The paper starts from the hypothesis that traditional approaches to segmentation are seriously flawed because the object of segmentation, the consumer, has dramatically changed over the past 30 years. The New Consumer actively defies segmentation attempts by marketing professionals and thus makes a new approach to marketing strategy necessary. The paper suggests to let the consumers segment themselves instead of doing market research. Thereby the filter between consumer and company is dropped. Self-segmentation is not as radical as it may sound and the paper shows in which industries it has been in use for over thirty years. Companies using self-segmentation let their customers choose/mix their own value proposition from the company’s offerings. This means that they open up the company to the consumers and that the consumers become involved in the value creation process. Thus, self-segmentation, building on Prahalad/Ramaswamy’s co-opting customer competence concept, is more than a marketing tool, it necessitates a re-structuring of organisational structures and a rethinking of the role of marketing as a value-creating activity.Marketing strategy, segmentation, market research, value proposition, new consumer, mass customisation

    Internet Customer Segmentation Using Web Log Data

    Get PDF
    The objective of this paper is to analyze web transaction log data that reveal customer behavior in the Internet channel, and to provide a useful online customer segmentation scheme. To achieve this, we analyze the relationship between the behavior of customers for online pet shops and revenue. We use the decision-tree method as a data-mining technique, and clustering analysis to segment customers.  We perform the study in two stages. First, we investigate the web transaction data of both the member customers and nonmember customers of a Korean online pet shop. Second, we narrow down the study focus and analyze only the member customers’ demographic data and their web transaction data. As a result, we obtain several meaningful segments based on customers’ transaction behavior and demographic characteristics. We use web log data to analyze customer transaction behavior and log-in information to analyze customer demographic characteristics. We discuss some strategic implications, for online shopping mall marketing, suggested by the acquired market segments
    • 

    corecore