6,606 research outputs found

    Learning Information Spread in Content Networks

    Full text link
    We introduce a model for predicting the diffusion of content information on social media. When propagation is usually modeled on discrete graph structures, we introduce here a continuous diffusion model, where nodes in a diffusion cascade are projected onto a latent space with the property that their proximity in this space reflects the temporal diffusion process. We focus on the task of predicting contaminated users for an initial initial information source and provide preliminary results on differents datasets.Comment: 4 page

    CIM: Community-Based Influence Maximization in Social Networks

    Get PDF
    [[abstract]]Given a social graph, the problem of influence maximization is to determine a set of nodes that maximizes the spread of influences. While some recent research has studied the problem of influence maximization, these works are generally too time consuming for practical use in a large-scale social network. In this article, we develop a new framework, community-based influence maximization (CIM), to tackle the influence maximization problem with an emphasis on the time efficiency issue. Our proposed framework, CIM, comprises three phases: (i) community detection, (ii) candidate generation, and (iii) seed selection. Specifically, phase (i) discovers the community structure of the network; phase (ii) uses the information of communities to narrow down the possible seed candidates; and phase (iii) finalizes the seed nodes from the candidate set. By exploiting the properties of the community structures, we are able to avoid overlapped information and thus efficiently select the number of seeds to maximize information spreads. The experimental results on both synthetic and real datasets show that the proposed CIM algorithm significantly outperforms the state-of-the-art algorithms in terms of efficiency and scalability, with almost no compromise of effectiveness.[[notice]]補正完畢[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙

    Collaborative Inference of Coexisting Information Diffusions

    Full text link
    Recently, \textit{diffusion history inference} has become an emerging research topic due to its great benefits for various applications, whose purpose is to reconstruct the missing histories of information diffusion traces according to incomplete observations. The existing methods, however, often focus only on single information diffusion trace, while in a real-world social network, there often coexist multiple information diffusions over the same network. In this paper, we propose a novel approach called Collaborative Inference Model (CIM) for the problem of the inference of coexisting information diffusions. By exploiting the synergism between the coexisting information diffusions, CIM holistically models multiple information diffusions as a sparse 4th-order tensor called Coexisting Diffusions Tensor (CDT) without any prior assumption of diffusion models, and collaboratively infers the histories of the coexisting information diffusions via a low-rank approximation of CDT with a fusion of heterogeneous constraints generated from additional data sources. To improve the efficiency, we further propose an optimal algorithm called Time Window based Parallel Decomposition Algorithm (TWPDA), which can speed up the inference without compromise on the accuracy by utilizing the temporal locality of information diffusions. The extensive experiments conducted on real world datasets and synthetic datasets verify the effectiveness and efficiency of CIM and TWPDA

    The Dynamics of Multi-Modal Networks

    Get PDF
    The widespread study of networks in diverse domains, including social, technological, and scientific settings, has increased the interest in statistical and machine learning techniques for network analysis. Many of these networks are complex, involving more than one kind of entity, and multiple relationship types, both changing over time. While there have been many network analysis methods proposed for problems such as network evolution, community detection, information diffusion and opinion leader identification, the majority of these methods assume a single entity type, a single edge type and often no temporal dynamics. One of the main shortcomings of these traditional techniques is their inadequacy for capturing higher-order dependencies often present in real, complex networks. To address these shortcomings, I focus on analysis and inference in dynamic, multi-modal, multi-relational networks, containing multiple entity types (such as people, social groups, organizations, locations, etc.), and different relationship types (such as friendship, membership, affiliation, etc.). An example from social network theory is a network describing users, organizations and interest groups, where users have different types of ties among each other, such as friendship, family ties, etc., as well as affiliation and membership links with organizations and interest groups. By considering the complex structure of these networks rather than limiting the analysis to a single entity or relationship type, I show how we can build richer predictive models that provide better understanding of the network dynamics, and thus result in better quality predictions. In the first part of my dissertation, I address the problems of network evolution and clustering. For network evolution, I describe methods for modeling the interactions between different modalities, and propose a co-evolution model for social and affiliation networks. I then move to the problem of network clustering, where I propose a novel algorithm for clustering multi-modal, multi-relational data. The second part of my dissertation focuses on the temporal dynamics of interactions in complex networks, from both user-level and network-level perspectives. For the user-centric approach, I analyze the dynamics of user relationships with other entity types, proposing a measure of the "loyalty" a user shows for a given group or topic, based on her temporal interaction pattern. I then move to macroscopic-level approaches for analyzing the dynamic processes that occur on a network scale. I propose a new differential adaptive diffusion model for incorporating diversity and trust in the process of information diffusion on multi-modal, multi-relational networks. I also discuss the implications of the proposed diffusion model on designing new strategies for viral marketing and influential detection. I validate all the proposed methods on several real-world networks from multiple domains
    • …
    corecore