945 research outputs found

    Mining sensor datasets with spatiotemporal neighborhoods

    Get PDF
    Many spatiotemporal data mining methods are dependent on how relationships between a spatiotemporal unit and its neighbors are defined. These relationships are often termed the neighborhood of a spatiotemporal object. The focus of this paper is the discovery of spatiotemporal neighborhoods to find automatically spatiotemporal sub-regions in a sensor dataset. This research is motivated by the need to characterize large sensor datasets like those found in oceanographic and meteorological research. The approach presented in this paper finds spatiotemporal neighborhoods in sensor datasets by combining an agglomerative method to create temporal intervals and a graph-based method to find spatial neighborhoods within each temporal interval. These methods were tested on real-world datasets including (a) sea surface temperature data from the Tropical Atmospheric Ocean Project (TAO) array in the Equatorial Pacific Ocean and (b) NEXRAD precipitation data from the Hydro-NEXRAD system. The results were evaluated based on known patterns of the phenomenon being measured. Furthermore the results were quantified by performing hypothesis testing to establish the statistical significance using Monte Carlo simulations. The approach was also compared with existing approaches using validation metrics namely spatial autocorrelation and temporal interval dissimilarity. The results of these experiments show that our approach indeed identifies highly refined spatiotemporal neighborhoods

    Development and Applications of Similarity Measures for Spatial-Temporal Event and Setting Sequences

    Get PDF
    Similarity or distance measures between data objects are applied frequently in many fields or domains such as geography, environmental science, biology, economics, computer science, linguistics, logic, business analytics, and statistics, among others. One area where similarity measures are particularly important is in the analysis of spatiotemporal event sequences and associated environs or settings. This dissertation focuses on developing a framework of modeling, representation, and new similarity measure construction for sequences of spatiotemporal events and corresponding settings, which can be applied to different event data types and used in different areas of data science. The first core part of this dissertation presents a matrix-based spatiotemporal event sequence representation that unifies punctual and interval-based representation of events. This framework supports different event data types and provides support for data mining and sequence classification and clustering. The similarity measure is based on the modified Jaccard index with temporal order constraints and accommodates different event data types. This approach is demonstrated through simulated data examples and the performance of the similarity measures is evaluated with a k-nearest neighbor algorithm (k-NN) classification test on synthetic datasets. These similarity measures are incorporated into a clustering method and successfully demonstrate the usefulness in a case study analysis of event sequences extracted from space time series of a water quality monitoring system. This dissertation further proposes a new similarity measure for event setting sequences, which involve the space and time in which events occur. While similarity measures for spatiotemporal event sequences have been studied, the settings and setting sequences have not yet been considered. While modeling event setting sequences, spatial and temporal scales are considered to define the bounds of the setting and incorporate dynamic variables along with static variables. Using a matrix-based representation and an extended Jaccard index, new similarity measures are developed to allow for the use of all variable data types. With these similarity measures coupled with other multivariate statistical analysis approaches, results from a case study involving setting sequences and pollution event sequences associated with the same monitoring stations, support the hypothesis that more similar spatial-temporal settings or setting sequences may generate more similar events or event sequences. To test the scalability of STES similarity measure in a larger dataset and an extended application in different fields, this dissertation compares and contrasts the prospective space-time scan statistic with the STES similarity approach for identifying COVID-19 hotspots. The COVID-19 pandemic has highlighted the importance of detecting hotspots or clusters of COVID-19 to provide decision makers at various levels with better information for managing distribution of human and technical resources as the outbreak in the USA continues to grow. The prospective space-time scan statistic has been used to help identify emerging disease clusters yet results from this approach can encounter strategic limitations imposed by the spatial constraints of the scanning window. The STES-based approach adapted for this pandemic context computes the similarity of evolving normalized COVID-19 daily cases by county and clusters these to identify counties with similarly evolving COVID-19 case histories. This dissertation analyzes the spread of COVID-19 within the continental US through four periods beginning from late January 2020 using the COVID-19 datasets maintained by John Hopkins University, Center for Systems Science and Engineering (CSSE). Results of the two approaches can complement with each other and taken together can aid in tracking the progression of the pandemic. Overall, the dissertation highlights the importance of developing similarity measures for analyzing spatiotemporal event sequences and associated settings, which can be applied to different event data types and used for data mining, sequence classification, and clustering

    Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey

    Get PDF
    The integration of things’ data on the Web and Web linking for things’ description and discovery is leading the way towards smart Cyber–Physical Systems (CPS). The data generated in CPS represents observations gathered by sensor devices about the ambient environment that can be manipulated by computational processes of the cyber world. Alongside this, the growing use of social networks offers near real-time citizen sensing capabilities as a complementary information source. The resulting Cyber–Physical–Social System (CPSS) can help to understand the real world and provide proactive services to users. The nature of CPSS data brings new requirements and challenges to different stages of data manipulation, including identification of data sources, processing and fusion of different types and scales of data. To gain an understanding of the existing methods and techniques which can be useful for a data-oriented CPSS implementation, this paper presents a survey of the existing research and commercial solutions. We define a conceptual framework for a data-oriented CPSS and detail the various solutions for building human–machine intelligence

    GIScience Driven R&D: Interdisciplinary GIST Group at Oak Ridge National Laboratory

    Get PDF
    Oak Ridge National Laboratory (ORNL) is the largest DOE multi-research facility in the US and is located in Oak Ridge, TN. One of the signature strengths of ORNL is Computational Science and Engineering and the Geographic Information Science and Technology (GIST) group contributes to that strength as part of the Computer Sciences and Engineering Division (CSED) within the Computer Sciences Directorate. The GIST group is at the forefront of High Resolution Population and Social Dynamics research and development resulting in innovative products such as LandScan Global (population distribution at 30 arc seconds) and now LandScan HD (population distribution at 3 arc seconds). Other research capabilities within the group include Critical Infrastructure Modeling, Energy Assurance, High Performance Geocomputation and Visualization, Emergency Preparedness and Response, Earth Science Informatics, and Climate Change Impacts. The GIST group is an interdisciplinary group ranging of approximately 50 researchers (staff and students) and over the summer, the number of students increases anywhere from 15 to 25. As for Purdue graduates within the group, there are three staff and two interns at this time and Purdue students regularly participate in our summer internships programs
    • …
    corecore