997 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Systems and Algorithms for Dynamic Graph Processing

    Get PDF
    Data generated from human and systems interactions could be naturally represented as graph data. Several emerging applications rely on graph data, such as the semantic web, social networks, bioinformatics, finance, and trading among others. These applications require graph querying capabilities which are often implemented in graph database management systems (GDBMS). Many GDBMSs have capabilities to evaluate one-time versions of recursive or subgraph queries over static graphs – graphs that do not change or a single snapshot of a changing graph. They generally do not support incrementally maintaining queries as graphs change. However, most applications that employ graphs are dynamic in nature resulting in graphs that change over time, also known as dynamic graphs. This thesis investigates how to build a generic and scalable incremental computation solution that is oblivious to graph workloads. It focuses on two fundamental computations performed by many applications: recursive queries and subgraph queries. Specifically, for subgraph queries, this thesis presents the first approach that (i) performs joins with worstcase optimal computation and communication costs; and (ii) maintains a total memory footprint almost linear in the number of input edges. For recursive queries, this thesis studies optimizations for using differential computation (DC). DC is a general incremental computation that can maintain the output of a recursive dataflow computation upon changes. However, it requires a prohibitively large amount of memory because it maintains differences that track changes in queries input/output. The thesis proposes a suite of optimizations that are based on reducing the number of these differences and recomputing them when necessary. The techniques and optimizations in this thesis, for subgraph and recursive computations, represent a proposal for how to build a state-of-the-art generic and scalable GDBMS for dynamic graph data management

    Contributions to time series analysis, modelling and forecasting to increase reliability in industrial environments.

    Get PDF
    356 p.La integración del Internet of Things en el sector industrial es clave para alcanzar la inteligencia empresarial. Este estudio se enfoca en mejorar o proponer nuevos enfoques para aumentar la confiabilidad de las soluciones de IA basadas en datos de series temporales en la industria. Se abordan tres fases: mejora de la calidad de los datos, modelos y errores. Se propone una definición estándar de métricas de calidad y se incluyen en el paquete dqts de R. Se exploran los pasos del modelado de series temporales, desde la extracción de características hasta la elección y aplicación del modelo de predicción más eficiente. El método KNPTS, basado en la búsqueda de patrones en el histórico, se presenta como un paquete de R para estimar datos futuros. Además, se sugiere el uso de medidas elásticas de similitud para evaluar modelos de regresión y la importancia de métricas adecuadas en problemas de clases desbalanceadas. Las contribuciones se validaron en casos de uso industrial de diferentes campos: calidad de producto, previsión de consumo eléctrico, detección de porosidad y diagnóstico de máquinas

    Parallel and Flow-Based High Quality Hypergraph Partitioning

    Get PDF
    Balanced hypergraph partitioning is a classic NP-hard optimization problem that is a fundamental tool in such diverse disciplines as VLSI circuit design, route planning, sharding distributed databases, optimizing communication volume in parallel computing, and accelerating the simulation of quantum circuits. Given a hypergraph and an integer kk, the task is to divide the vertices into kk disjoint blocks with bounded size, while minimizing an objective function on the hyperedges that span multiple blocks. In this dissertation we consider the most commonly used objective, the connectivity metric, where we aim to minimize the number of different blocks connected by each hyperedge. The most successful heuristic for balanced partitioning is the multilevel approach, which consists of three phases. In the coarsening phase, vertex clusters are contracted to obtain a sequence of structurally similar but successively smaller hypergraphs. Once sufficiently small, an initial partition is computed. Lastly, the contractions are successively undone in reverse order, and an iterative improvement algorithm is employed to refine the projected partition on each level. An important aspect in designing practical heuristics for optimization problems is the trade-off between solution quality and running time. The appropriate trade-off depends on the specific application, the size of the data sets, and the computational resources available to solve the problem. Existing algorithms are either slow, sequential and offer high solution quality, or are simple, fast, easy to parallelize, and offer low quality. While this trade-off cannot be avoided entirely, our goal is to close the gaps as much as possible. We achieve this by improving the state of the art in all non-trivial areas of the trade-off landscape with only a few techniques, but employed in two different ways. Furthermore, most research on parallelization has focused on distributed memory, which neglects the greater flexibility of shared-memory algorithms and the wide availability of commodity multi-core machines. In this thesis, we therefore design and revisit fundamental techniques for each phase of the multilevel approach, and develop highly efficient shared-memory parallel implementations thereof. We consider two iterative improvement algorithms, one based on the Fiduccia-Mattheyses (FM) heuristic, and one based on label propagation. For these, we propose a variety of techniques to improve the accuracy of gains when moving vertices in parallel, as well as low-level algorithmic improvements. For coarsening, we present a parallel variant of greedy agglomerative clustering with a novel method to resolve cluster join conflicts on-the-fly. Combined with a preprocessing phase for coarsening based on community detection, a portfolio of from-scratch partitioning algorithms, as well as recursive partitioning with work-stealing, we obtain our first parallel multilevel framework. It is the fastest partitioner known, and achieves medium-high quality, beating all parallel partitioners, and is close to the highest quality sequential partitioner. Our second contribution is a parallelization of an n-level approach, where only one vertex is contracted and uncontracted on each level. This extreme approach aims at high solution quality via very fine-grained, localized refinement, but seems inherently sequential. We devise an asynchronous n-level coarsening scheme based on a hierarchical decomposition of the contractions, as well as a batch-synchronous uncoarsening, and later fully asynchronous uncoarsening. In addition, we adapt our refinement algorithms, and also use the preprocessing and portfolio. This scheme is highly scalable, and achieves the same quality as the highest quality sequential partitioner (which is based on the same components), but is of course slower than our first framework due to fine-grained uncoarsening. The last ingredient for high quality is an iterative improvement algorithm based on maximum flows. In the sequential setting, we first improve an existing idea by solving incremental maximum flow problems, which leads to smaller cuts and is faster due to engineering efforts. Subsequently, we parallelize the maximum flow algorithm and schedule refinements in parallel. Beyond the strive for highest quality, we present a deterministically parallel partitioning framework. We develop deterministic versions of the preprocessing, coarsening, and label propagation refinement. Experimentally, we demonstrate that the penalties for determinism in terms of partition quality and running time are very small. All of our claims are validated through extensive experiments, comparing our algorithms with state-of-the-art solvers on large and diverse benchmark sets. To foster further research, we make our contributions available in our open-source framework Mt-KaHyPar. While it seems inevitable, that with ever increasing problem sizes, we must transition to distributed memory algorithms, the study of shared-memory techniques is not in vain. With the multilevel approach, even the inherently slow techniques have a role to play in fast systems, as they can be employed to boost quality on coarse levels at little expense. Similarly, techniques for shared-memory parallelism are important, both as soon as a coarse graph fits into memory, and as local building blocks in the distributed algorithm

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Privaatsust säilitavad paralleelarvutused graafiülesannete jaoks

    Get PDF
    Turvalisel mitmeosalisel arvutusel põhinevate reaalsete privaatsusrakenduste loomine on SMC-protokolli arvutusosaliste ümmarguse keerukuse tõttu keeruline. Privaatsust säilitavate tehnoloogiate uudsuse ja nende probleemidega kaasnevate suurte arvutuskulude tõttu ei ole paralleelseid privaatsust säilitavaid graafikualgoritme veel uuritud. Graafikalgoritmid on paljude arvutiteaduse rakenduste selgroog, nagu navigatsioonisüsteemid, kogukonna tuvastamine, tarneahela võrk, hüperspektraalne kujutis ja hõredad lineaarsed lahendajad. Graafikalgoritmide suurte privaatsete andmekogumite töötlemise kiirendamiseks ja kõrgetasemeliste arvutusnõuete täitmiseks on vaja privaatsust säilitavaid paralleelseid algoritme. Seetõttu esitleb käesolev lõputöö tipptasemel protokolle privaatsuse säilitamise paralleelarvutustes erinevate graafikuprobleemide jaoks, ühe allika lühima tee, kõigi paaride lühima tee, minimaalse ulatuva puu ja metsa ning algebralise tee arvutamise. Need uued protokollid on üles ehitatud kombinatoorsete ja algebraliste graafikualgoritmide põhjal lisaks SMC protokollidele. Nende protokollide koostamiseks kasutatakse ka ühe käsuga mitut andmeoperatsiooni, et vooru keerukust tõhusalt vähendada. Oleme väljapakutud protokollid juurutanud Sharemind SMC platvormil, kasutades erinevaid graafikuid ja võrgukeskkondi. Selles lõputöös kirjeldatakse uudseid paralleelprotokolle koos nendega seotud algoritmide, tulemuste, kiirendamise, hindamiste ja ulatusliku võrdlusuuringuga. Privaatsust säilitavate ühe allika lühimate teede ja minimaalse ulatusega puuprotokollide tegelike juurutuste tulemused näitavad tõhusat meetodit, mis vähendas tööaega võrreldes varasemate töödega sadu kordi. Lisaks ei ole privaatsust säilitavate kõigi paaride lühima tee protokollide hindamine ja ulatuslik võrdlusuuringud sarnased ühegi varasema tööga. Lisaks pole kunagi varem käsitletud privaatsust säilitavaid metsa ja algebralise tee arvutamise protokolle.Constructing real-world privacy applications based on secure multiparty computation is challenging due to the round complexity of the computation parties of SMC protocol. Due to the novelty of privacy-preserving technologies and the high computational costs associated with these problems, parallel privacy-preserving graph algorithms have not yet been studied. Graph algorithms are the backbone of many applications in computer science, such as navigation systems, community detection, supply chain network, hyperspectral image, and sparse linear solvers. In order to expedite the processing of large private data sets for graphs algorithms and meet high-end computational demands, privacy-preserving parallel algorithms are needed. Therefore, this Thesis presents the state-of-the-art protocols in privacy-preserving parallel computations for different graphs problems, single-source shortest path (SSSP), All-pairs shortest path (APSP), minimum spanning tree (MST) and forest (MSF), and algebraic path computation. These new protocols have been constructed based on combinatorial and algebraic graph algorithms on top of the SMC protocols. Single-instruction-multiple-data (SIMD) operations are also used to build those protocols to reduce the round complexities efficiently. We have implemented the proposed protocols on the Sharemind SMC platform using various graphs and network environments. This Thesis outlines novel parallel protocols with their related algorithms, the results, speed-up, evaluations, and extensive benchmarking. The results of the real implementations of the privacy-preserving single-source shortest paths and minimum spanning tree protocols show an efficient method that reduced the running time hundreds of times compared with previous works. Furthermore, the evaluation and extensive benchmarking of privacy-preserving All-pairs shortest path protocols are not similar to any previous work. Moreover, the privacy-preserving minimum spanning forest and algebraic path computation protocols have never been addressed before.https://www.ester.ee/record=b555865

    Eddy current defect response analysis using sum of Gaussian methods

    Get PDF
    This dissertation is a study of methods to automatedly detect and produce approximations of eddy current differential coil defect signatures in terms of a summed collection of Gaussian functions (SoG). Datasets consisting of varying material, defect size, inspection frequency, and coil diameter were investigated. Dimensionally reduced representations of the defect responses were obtained utilizing common existing reduction methods and novel enhancements to them utilizing SoG Representations. Efficacy of the SoG enhanced representations were studied utilizing common Machine Learning (ML) interpretable classifier designs with the SoG representations indicating significant improvement of common analysis metrics

    Development of a R package to facilitate the learning of clustering techniques

    Get PDF
    This project explores the development of a tool, in the form of a R package, to ease the process of learning clustering techniques, how they work and what their pros and cons are. This tool should provide implementations for several different clustering techniques with explanations in order to allow the student to get familiar with the characteristics of each algorithm by testing them against several different datasets while deepening their understanding of them through the explanations. Additionally, these explanations should adapt to the input data, making the tool not only adept for self-regulated learning but for teaching too.Grado en Ingeniería Informátic
    corecore