141 research outputs found

    Hierarchical Transformer with Spatio-Temporal Context Aggregation for Next Point-of-Interest Recommendation

    Full text link
    Next point-of-interest (POI) recommendation is a critical task in location-based social networks, yet remains challenging due to a high degree of variation and personalization exhibited in user movements. In this work, we explore the latent hierarchical structure composed of multi-granularity short-term structural patterns in user check-in sequences. We propose a Spatio-Temporal context AggRegated Hierarchical Transformer (STAR-HiT) for next POI recommendation, which employs stacked hierarchical encoders to recursively encode the spatio-temporal context and explicitly locate subsequences of different granularities. More specifically, in each encoder, the global attention layer captures the spatio-temporal context of the sequence, while the local attention layer performed within each subsequence enhances subsequence modeling using the local context. The sequence partition layer infers positions and lengths of subsequences from the global context adaptively, such that semantics in subsequences can be well preserved. Finally, the subsequence aggregation layer fuses representations within each subsequence to form the corresponding subsequence representation, thereby generating a new sequence of higher-level granularity. The stacking of encoders captures the latent hierarchical structure of the check-in sequence, which is used to predict the next visiting POI. Extensive experiments on three public datasets demonstrate that the proposed model achieves superior performance whilst providing explanations for recommendations. Codes are available at https://github.com/JennyXieJiayi/STAR-HiT

    A survey of temporal knowledge discovery paradigms and methods

    Get PDF
    With the increase in the size of data sets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. At the same time, interest in temporal databases has been increasing and a growing number of both prototype and implemented systems are using an enhanced temporal understanding to explain aspects of behavior associated with the implicit time-varying nature of the universe. This paper investigates the confluence of these two areas, surveys the work to date, and explores the issues involved and the outstanding problems in temporal data mining

    Test-Time Compensated Representation Learning for Extreme Traffic Forecasting

    Full text link
    Traffic forecasting is a challenging task due to the complex spatio-temporal correlations among traffic series. In this paper, we identify an underexplored problem in multivariate traffic series prediction: extreme events. Road congestion and rush hours can result in low correlation in vehicle speeds at various intersections during adjacent time periods. Existing methods generally predict future series based on recent observations and entirely discard training data during the testing phase, rendering them unreliable for forecasting highly nonlinear multivariate time series. To tackle this issue, we propose a test-time compensated representation learning framework comprising a spatio-temporal decomposed data bank and a multi-head spatial transformer model (CompFormer). The former component explicitly separates all training data along the temporal dimension according to periodicity characteristics, while the latter component establishes a connection between recent observations and historical series in the data bank through a spatial attention matrix. This enables the CompFormer to transfer robust features to overcome anomalous events while using fewer computational resources. Our modules can be flexibly integrated with existing forecasting methods through end-to-end training, and we demonstrate their effectiveness on the METR-LA and PEMS-BAY benchmarks. Extensive experimental results show that our method is particularly important in extreme events, and can achieve significant improvements over six strong baselines, with an overall improvement of up to 28.2%.Comment: 13 pages, 10 figures, 5 table

    Interactive Feature Selection and Visualization for Large Observational Data

    Get PDF
    Data can create enormous values in both scientific and industrial fields, especially for access to new knowledge and inspiration of innovation. As the massive increases in computing power, data storage capacity, as well as capability of data generation and collection, the scientific research communities are confronting with a transformation of exploiting the advanced uses of the large-scale, complex, and high-resolution data sets in situation awareness and decision-making projects. To comprehensively analyze the big data problems requires the analyses aiming at various aspects which involves of effective selections of static and time-varying feature patterns that fulfills the interests of domain users. To fully utilize the benefits of the ever-growing size of data and computing power in real applications, we proposed a general feature analysis pipeline and an integrated system that is general, scalable, and reliable for interactive feature selection and visualization of large observational data for situation awareness. The great challenge tackled in this dissertation was about how to effectively identify and select meaningful features in a complex feature space. Our research efforts mainly included three aspects: 1. Enable domain users to better define their interests of analysis; 2. Accelerate the process of feature selection; 3. Comprehensively present the intermediate and final analysis results in a visualized way. For static feature selection, we developed a series of quantitative metrics that related the user interest with the spatio-temporal characteristics of features. For timevarying feature selection, we proposed the concept of generalized feature set and used a generalized time-varying feature to describe the selection interest. Additionally, we provided a scalable system framework that manages both data processing and interactive visualization, and effectively exploits the computation and analysis resources. The methods and the system design together actualized interactive feature selections from two representative large observational data sets with large spatial and temporal resolutions respectively. The final results supported the endeavors in applications of big data analysis regarding combining the statistical methods with high performance computing techniques to visualize real events interactively

    A knowledge-based method for generating summaries of spatial movement in geographic areas

    Full text link
    In this article we describe a method for automatically generating text summaries of data corresponding to traces of spatial movement in geographical areas. The method can help humans to understand large data streams, such as the amounts of GPS data recorded by a variety of sensors in mobile phones, cars, etc. We describe the knowledge representations we designed for our method and the main components of our method for generating the summaries: a discourse planner, an abstraction module and a text generator. We also present evaluation results that show the ability of our method to generate certain types of geospatial and temporal descriptions
    • …
    corecore