1,772 research outputs found

    Machine learning in critical care: state-of-the-art and a sepsis case study

    Get PDF
    Background: Like other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments. Results: The increasing availability of complex and heterogeneous data at the point of patient attention in critical care environments makes the development of fresh approaches to data analysis almost compulsory. Computational Intelligence (CI) and Machine Learning (ML) methods can provide such approaches and have already shown their usefulness in addressing problems in this context. The current study has a dual goal: it is first a review of the state-of-the-art on the use and application of such methods in the field of critical care. Such review is presented from the viewpoint of the different subfields of critical care, but also from the viewpoint of the different available ML and CI techniques. The second goal is presenting a collection of results that illustrate the breath of possibilities opened by ML and CI methods using a single problem, the investigation of septic shock at the ICU. Conclusion: We have presented a structured state-of-the-art that illustrates the broad-ranging ways in which ML and CI methods can make a difference in problems affecting the manifold areas of critical care. The potential of ML and CI has been illustrated in detail through an example concerning the sepsis pathology. The new definitions of sepsis and the relevance of using the systemic inflammatory response syndrome (SIRS) in its diagnosis have been considered. Conditional independence models have been used to address this problem, showing that SIRS depends on both organ dysfunction measured through the Sequential Organ Failure (SOFA) score and the ICU outcome, thus concluding that SIRS should still be considered in the study of the pathophysiology of Sepsis. Current assessment of the risk of dead at the ICU lacks specificity. ML and CI techniques are shown to improve the assessment using both indicators already in place and other clinical variables that are routinely measured. Kernel methods in particular are shown to provide the best performance balance while being amenable to representation through graphical models, which increases their interpretability and, with it, their likelihood to be accepted in medical practice.Peer ReviewedPostprint (published version

    Artificial Intelligence for the prediction of weaning readiness outcome in a multi-centrical clinical cohort of mechanically ventilated patients

    Get PDF
    Quando un paziente soffre di insufficienza respiratoria acuta, viene praticata la ventilazione meccanica (VM) finché questa non riesce a respirare di nuovo in autonomia. Il medico di Terapia Intensiva verifica ogni giorno se la VM può essere interrotta. Questo screening consiste in una prima fase, il Readiness Test (RT), che è composta da vari parametri clinici. Se questo test ha esito positivo, si sottopone il paziente a 30 minuti di respirazione spontanea (SBT). Se anche l'SBT viene superato con successo, la VM viene interrotta. Al contrario, se l’RT o l’SBT falliscono, il paziente rimane in VM e verrà rivalutato il giorno successivo. Quindi ogni giorno possono verificarsi tre scenari mutuamente esclusivi: l’SBT non verrà tentato, l’SBT fallirà o l’SBT avrà successo (portando quindi all’estubazione del paziente). Il modello di intelligenza artificiale sviluppato, è progettato per dedurre fin dalle prime ore del mattino quale dei tre scenari si verificherà probabilmente nel corso della giornata, partendo dai dati clinici del paziente, dalle informazioni raccolte nel diario clinico dei giorni precedenti e dall'intera storia di registrazione minuto-per-minuto dei vari parametri del ventilatore meccanico, provenienti da uno studio osservazionale retrospettivo multicentrico, condotto in Italia nel corso di 27 mesi. Questi dati vengono elaborati con un approccio di Deep Learning, attraverso una topologia di rete neurale multi-sorgente, alimentata da architetture ricorrenti multiple. Gli iper-parametri sono ottimizzati per selezionare il modello desiderato attraverso la convalida incrociata, riservando 36 pazienti su 182 per testare le prestazioni finali del modello su una serie di metriche, tra cui uno score personalizzato progettato per evidenziare l'impatto clinico. Il modello di intelligenza artificiale finale mostra un'accuratezza del 79% [74, 83%], uno score personalizzato di 0,01 [-0,04, 0,05], un MCC di 0,28 [0,17, 0,39], ottenendo un punteggio migliore rispetto agli altri modelli di confronto, tra cui XG Boost, addestrato solo sui dati clinici giornalieri del giorno precedente, che ha avuto un'accuratezza del 61% [56%, 66%], un MCC di 0,14 [0,06, 0,2] e uno score personalizzato di -0,05 [-0,08, -0,01]. Complessivamente, il modello di intelligenza artificiale è in grado di approssimare bene l'attuale gestione clinica giorno per giorno, fornendo suggerimenti al mattino presto. Inoltre, c'è ancora spazio per migliorare l'utilità clinica del modello considerando ulteriori dati di addestramento personalizzati.When someone suffers from acute respiratory failure, mechanical ventilation (MV) is performed until they can breathe on their own again. The doctor checks every day whether the MV can be stopped. This screening consists of a first phase, the Readiness Testing (RT), which includes various clinical parameters. If this test is successful, 30 minutes of spontaneous breathing (SBT) is attempted. If also the SBT is passed successfully, the VM is stopped. On the contrary, if RT or SBT fails, the patient will be re-evaluated the next day. So, every day three mutually exclusive scenarios may happen: SBT will not be attempted, SBT will fail, or SBT will succeed. Our artificial intelligence model is designed to infer early in the morning which of the three scenarios will probably occur during the day, starting from the patient's clinical data, from the information collected in the previous day’s clinical diary, and from whole minute-by-minute recording history of the various parameters of the mechanical ventilator, coming from a retrospective observational multi-centrical study, conducted in Italy over a course of 27 months. Those data are processed with a deep learning approach, through a multi-source neural network topology, powered by multiple recurrent architectures. Hyper-parameters are optimized to select the purposed model through cross-validation, setting aside 36 out of 182 patients for testing final model performance over a variety of metrics, including a custom score designed to highlight clinical impact. The final AI model had an accuracy of 79% [74, 83%], a custom score of 0.01 [-0.04, 0.05], a MCC of 0.28 [0.17, 0.39], scoring better than the other comparison models, including XG Boost that was trained on daily and baseline clinical data of the previous day only, which had an accuracy of 61% [56%, 66%], a MCC of 0.14 [0.06, 0.2] and a custom score of -0.05 [-0.08, -0.01]. Overall, AI model could approximate well what is the current clinical management throughout day-by-day providing suggestions early in the morning. Moreover, there are still space to improve the model clinical utility considering additional tailored training data

    Defining The Difficult-To-Sedate Clinical Phenotype In Critically Ill Children

    Get PDF
    Each year thousands of critically-ill children receive sedation to help them tolerate intensive care therapies. A significant number of these children do not respond as expected to appropriately dosed sedation and remain agitated for some period, leading to iatrogenic injury and increased stress, as well as increased resource use. Children who remain under-sedated despite optimal therapy are considered “difficult-to-sedate”, but, to date, little data have been available to support an accurate description of this group of children. Recent attention to heterogeneity of treatment effect has spurred the development of clinical phenotypes that describe subgroups of patients within a disease process who differ in their clinical attributes and responses to therapy. Defining the difficult-to-sedate clinical phenotype in critically ill children is important because it will allow the use of sedation therapy targeted to the unique clinical, physiological, and developmental characteristics of the child. The three papers developed in this dissertation study explored the concept of the difficult-to-sedate child clinical phenotype. A comprehensive review of the literature identified the lack of an operational definition and identified factors contributing to the clinical phenotype. These factors were used to develop an initial operational definition and to construct a conceptual model. Expert critical care clinicians validated the elements of the operational definition through an assessment of face and content validity and proposed additional factors for inclusion in the model. A refined definition was tested using data from the RESTORE study. Characteristics identified through latent class and classification and regression tree analysis were consistent with the conceptual model proposed. Decreasing the ambiguity that currently exists around the concept of the difficult-to-sedate child clinical phenotype is a major achievement of this study. A clear operational definition of the concept promotes its consistent measurement and facilitates future investigation, and allows useful comparisons across studies. The conceptual model and operational definition require further investigation and refinement, as well as prospective validation by other investigators. This study suggests that a clinically meaningful population of difficult-to-sedate children requiring mechanical ventilation for a critical illness exists. Documentation of this phenotype promotes the development of evidence to support best practices in the care of these children

    Secondary Analysis of Electronic Health Records

    Get PDF
    Health Informatics; Ethics; Data Mining and Knowledge Discovery; Statistics for Life Sciences, Medicine, Health Science

    An investigation into the effects of commencing haemodialysis in the critically ill

    Get PDF
    <b>Introduction:</b> We have aimed to describe haemodynamic changes when haemodialysis is instituted in the critically ill. 3 hypotheses are tested: 1)The initial session is associated with cardiovascular instability, 2)The initial session is associated with more cardiovascular instability compared to subsequent sessions, and 3)Looking at unstable sessions alone, there will be a greater proportion of potentially harmful changes in the initial sessions compared to subsequent ones. <b>Methods:</b> Data was collected for 209 patients, identifying 1605 dialysis sessions. Analysis was performed on hourly records, classifying sessions as stable/unstable by a cutoff of >+/-20% change in baseline physiology (HR/MAP). Data from 3 hours prior, and 4 hours after dialysis was included, and average and minimum values derived. 3 time comparisons were made (pre-HD:during, during HD:post, pre-HD:post). Initial sessions were analysed separately from subsequent sessions to derive 2 groups. If a session was identified as being unstable, then the nature of instability was examined by recording whether changes crossed defined physiological ranges. The changes seen in unstable sessions could be described as to their effects: being harmful/potentially harmful, or beneficial/potentially beneficial. <b>Results:</b> Discarding incomplete data, 181 initial and 1382 subsequent sessions were analysed. A session was deemed to be stable if there was no significant change (>+/-20%) in the time-averaged or minimum MAP/HR across time comparisons. By this definition 85/181 initial sessions were unstable (47%, 95% CI SEM 39.8-54.2). Therefore Hypothesis 1 is accepted. This compares to 44% of subsequent sessions (95% CI 41.1-46.3). Comparing these proportions and their respective CI gives a 95% CI for the standard error of the difference of -4% to 10%. Therefore Hypothesis 2 is rejected. In initial sessions there were 92/1020 harmful changes. This gives a proportion of 9.0% (95% CI SEM 7.4-10.9). In the subsequent sessions there were 712/7248 harmful changes. This gives a proportion of 9.8% (95% CI SEM 9.1-10.5). Comparing the two unpaired proportions gives a difference of -0.08% with a 95% CI of the SE of the difference of -2.5 to +1.2. Hypothesis 3 is rejected. Fisher’s exact test gives a result of p=0.68, reinforcing the lack of significant variance. <b>Conclusions:</b> Our results reject the claims that using haemodialysis is an inherently unstable choice of therapy. Although proportionally more of the initial sessions are classed as unstable, the majority of MAP and HR changes are beneficial in nature

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Smart Pain Assessment tool for critically ill patients unable to communicate: Early stage development of a medical device

    Get PDF
    Critically ill patients often experience pain during their treatment but due to patients’ lowered ability to communicate, pain assessment may be challenging. The aim of the study was to develop the concept of the Smart Pain Assessment tool based on the Internet of Things technology for critically ill patients who are unable to communicate their pain. The study describes two phases of the early stage development of the Smart Pain Assessment tool in a medical device development framework. The initiation Phase I consists of a scoping review, conducted to explore the potentiality of the Internet of Things technology in basic nursing care. In the formulation Phase II, the prototype of the Smart Pain Assessment tool was tested and the concept was evaluated for feasibility. The prototype was tested with healthy participants (n=31) during experimental pain, measuring pain-related physiological variables and activity of five facial muscles. The variables were combined using machine learning to create a model for pain prediction. The feasibility of the concept was evaluated in focus group interviews with critical care nurses (n=20) as potential users of the device. The literature review suggests that the development of Internet of Things -based innovations in basic nursing care is diverse but still in its early stages. The prototype was able to identify experimental pain and classify its intensity as mild or moderate/severe with 83% accuracy. In addition, three of the five facial muscles tested were recognised to provide the most pain-related information. According to critical care nurses, the Smart Pain Assessment tool could be used to ensure pain assessment, but it needs to be integrated into an existing patient monitoring and information system, and the reliability of the data provided by the device needs to be assessable for nurses. Based on the results of this study, detecting and classifying experimental pain's intensity automatically using an Internet of Things -based device is possible. The prototype of the device should be further developed and tested in clinical trials, involving the users at each stage of the development to ensure clinical relevance and a user-centric design.Älykäs kipumittari kommunikoimaan kykenemättömille kriittisesti sairaille potilaille: Lääkinnällisen laitteen varhainen kehittäminen Kriittisesti sairaat potilaat kokevat usein kipua hoidon aikana, mutta potilaiden kivun arviointi on haastavaa tilanteissa, joissa potilaan kyky kommunikoida on alentunut. Tutkimuksen tavoitteena oli kehittää toimintakonsepti esineiden internet -teknologiaan perustuvalle Älykkäälle kipumittarille, joka on suunniteltu kriittisesti sairaille potilaille, jotka eivät kykene kommunikoimaan kivustaan. Tutkimuksessa kuvataan Älykkään kipumittarin varhaisia kehitysvaiheita lääkinnällisen laitteen kehitysprosessin mukaisesti. Aloitusvaiheessa I toteutettiin kartoittava kirjallisuuskatsaus, jossa selvitettiin esineiden internet -teknologian mahdollisuuksia perushoidossa. Muotoiluvaiheessa II testattiin laitteen prototyyppiä ja arvioitiin laitteen toimintakonseptin toteutettavuutta. Prototyypin testaukseen osallistui terveitä koehenkilöitä (n=31), joille tuotettiin kipua. Kipualtistuksen aikana mitattiin kipuun liittyviä fysiologisia muuttujia ja viiden kasvolihaksen aktivoitumista. Muuttujat yhdistettiin koneoppimismenetelmällä kivun ennustemalliksi. Lisäksi teho-osastolla työskentelevät sairaanhoitajat (n=20) arvioivat fokusryhmähaastatteluissa laitteen toimintakonseptin toteutettavuutta. Kirjallisuuskatsauksen tuloksista käy ilmi, että esineiden internetiin perustuvien innovaatioiden kehittäminen perushoidon tukemiseen on monipuolista mutta se on vielä alkuvaiheessa. Älykkään kipumittarin prototyyppi osoittautui lupaavaksi kokeellisen kivun tunnistamisessa ja sen voimakkuuden luokittelussa, saavuttaen 83 %:n tarkkuuden kivun luokittelussa lievään tai kohtalaiseen/voimakkaaseen. Lisäksi todettiin, että viidestä mitatusta kasvolihaksesta kolme antoi merkittävintä tietoa kivun tunnistamiseen ja voimakkuuteen liittyen. Sairaanhoitajat näkivät potentiaalia Älykkään kipumittarin käytössä potilaiden kivun arvioinnissa teho-osastolla. Laite tulisi kuitenkin integroida käytössä olevaan potilastietojärjestelmään, ja laitteen tuottamien tietojen luotettavuus tulisi olla hoitajien arvioitavissa. Tulosten perusteella esineiden internet -teknologiaan perustuvan laitteen avulla on mahdollista tunnistaa ja luokitella kokeellisen kivun voimakkuutta automaattisesti. Laitteen prototyyppiä tulee jatkokehittää ja testata kliinisissä tutkimuksissa. Tulevat käyttäjät tulee ottaa mukaan jokaiseen kehitysvaiheeseen laitteen kliinisen merkityksen ja käyttäjälähtöisen muotoilun varmistamiseksi

    Effect of intravenous morphine bolus on respiratory drive in ICU patients

    Get PDF
    • …
    corecore