24,004 research outputs found

    Modeling Individual Cyclic Variation in Human Behavior

    Full text link
    Cycles are fundamental to human health and behavior. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present CyHMMs, a cyclic hidden Markov model method for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to model variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets -- of menstrual cycle symptoms and physical activity tracking data -- yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.Comment: Accepted at WWW 201

    Discovering Organizational Correlations from Twitter

    Full text link
    Organizational relationships are usually very complex in real life. It is difficult or impossible to directly measure such correlations among different organizations, because important information is usually not publicly available (e.g., the correlations of terrorist organizations). Nowadays, an increasing amount of organizational information can be posted online by individuals and spread instantly through Twitter. Such information can be crucial for detecting organizational correlations. In this paper, we study the problem of discovering correlations among organizations from Twitter. Mining organizational correlations is a very challenging task due to the following reasons: a) Data in Twitter occurs as large volumes of mixed information. The most relevant information about organizations is often buried. Thus, the organizational correlations can be scattered in multiple places, represented by different forms; b) Making use of information from Twitter collectively and judiciously is difficult because of the multiple representations of organizational correlations that are extracted. In order to address these issues, we propose multi-CG (multiple Correlation Graphs based model), an unsupervised framework that can learn a consensus of correlations among organizations based on multiple representations extracted from Twitter, which is more accurate and robust than correlations based on a single representation. Empirical study shows that the consensus graph extracted from Twitter can capture the organizational correlations effectively.Comment: 11 pages, 4 figure

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG

    Dynamic similarity promotes interpersonal coordination in joint-action

    Get PDF
    Human movement has been studied for decades and dynamic laws of motion that are common to all humans have been derived. Yet, every individual moves differently from everyone else (faster/slower, harder/smoother etc). We propose here an index of such variability, namely an individual motor signature (IMS) able to capture the subtle differences in the way each of us moves. We show that the IMS of a person is time-invariant and that it significantly differs from those of other individuals. This allows us to quantify the dynamic similarity, a measure of rapport between dynamics of different individuals' movements, and demonstrate that it facilitates coordination during interaction. We use our measure to confirm a key prediction of the theory of similarity that coordination between two individuals performing a joint-action task is higher if their motions share similar dynamic features. Furthermore, we use a virtual avatar driven by an interactive cognitive architecture based on feedback control theory to explore the effects of different kinematic features of the avatar motion on the coordination with human players

    Periodic Pattern Mining a Algorithms and Applications

    Get PDF
    Owing to a large number of applications periodic pattern mining has been extensively studied for over a decade Periodic pattern is a pattern that repeats itself with a specific period in a give sequence Periodic patterns can be mined from datasets like biological sequences continuous and discrete time series data spatiotemporal data and social networks Periodic patterns are classified based on different criteria Periodic patterns are categorized as frequent periodic patterns and statistically significant patterns based on the frequency of occurrence Frequent periodic patterns are in turn classified as perfect and imperfect periodic patterns full and partial periodic patterns synchronous and asynchronous periodic patterns dense periodic patterns approximate periodic patterns This paper presents a survey of the state of art research on periodic pattern mining algorithms and their application areas A discussion of merits and demerits of these algorithms was given The paper also presents a brief overview of algorithms that can be applied for specific types of datasets like spatiotemporal data and social network
    • …
    corecore