18,735 research outputs found

    An empirical study evaluating depth of inheritance on the maintainability of object-oriented software

    Get PDF
    This empirical research was undertaken as part of a multi-method programme of research to investigate unsupported claims made of object-oriented technology. A series of subject-based laboratory experiments, including an internal replication, tested the effect of inheritance depth on the maintainability of object-oriented software. Subjects were timed performing identical maintenance tasks on object-oriented software with a hierarchy of three levels of inheritance depth and equivalent object-based software with no inheritance. This was then replicated with more experienced subjects. In a second experiment of similar design, subjects were timed performing identical maintenance tasks on object-oriented software with a hierarchy of five levels of inheritance depth and the equivalent object-based software. The collected data showed that subjects maintaining object-oriented software with three levels of inheritance depth performed the maintenance tasks significantly quicker than those maintaining equivalent object-based software with no inheritance. In contrast, subjects maintaining the object-oriented software with five levels of inheritance depth took longer, on average, than the subjects maintaining the equivalent object-based software (although statistical significance was not obtained). Subjects' source code solutions and debriefing questionnaires provided some evidence suggesting subjects began to experience diffculties with the deeper inheritance hierarchy. It is not at all obvious that object-oriented software is going to be more maintainable in the long run. These findings are sufficiently important that attempts to verify the results should be made by independent researchers

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Design pattern mining enhanced by machine learning

    Full text link

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other
    • โ€ฆ
    corecore