41 research outputs found

    Characterizing interactions in online social networks during exceptional events

    Get PDF
    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events

    Contraction of online response to major events

    Get PDF
    Quantifying regularities in behavioral dynamics is of crucial interest for understanding collective social events such as panics or political revolutions. With the widespread use of digital communication media it has become possible to study massive data streams of user-created content in which individuals express their sentiments, often towards a specific topic. Here we investigate messages from various online media created in response to major, collectively followed events such as sport tournaments, presidential elections or a large snow storm. We relate content length and message rate, and find a systematic correlation during events which can be described by a power law relation - the higher the excitation the shorter the messages. We show that on the one hand this effect can be observed in the behavior of most regular users, and on the other hand is accentuated by the engagement of additional user demographics who only post during phases of high collective activity. Further, we identify the distributions of content lengths as lognormals in line with statistical linguistics, and suggest a phenomenological law for the systematic dependence of the message rate to the lognormal mean parameter. Our measurements have practical implications for the design of micro-blogging and messaging services. In the case of the existing service Twitter, we show that the imposed limit of 140 characters per message currently leads to a substantial fraction of possibly dissatisfying to compose tweets that need to be truncated by their users.Comment: project page: http://senseable.mit.edu/tweetbursts

    Control and Data Analysis of Complex Networks

    Get PDF
    abstract: This dissertation treats a number of related problems in control and data analysis of complex networks. First, in existing linear controllability frameworks, the ability to steer a network from any initiate state toward any desired state is measured by the minimum number of driver nodes. However, the associated optimal control energy can become unbearably large, preventing actual control from being realized. Here I develop a physical controllability framework and propose strategies to turn physically uncontrollable networks into physically controllable ones. I also discover that although full control can be guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control energy to achieve actual control, and my work provides a framework to address this issue. Second, in spite of recent progresses in linear controllability, controlling nonlinear dynamical networks remains an outstanding problem. Here I develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another. I introduce the concept of attractor network and formulate a quantifiable framework: a network is more controllable if the attractor network is more strongly connected. I test the control framework using examples from various models and demonstrate the beneficial role of noise in facilitating control. Third, I analyze large data sets from a diverse online social networking (OSN) systems and find that the growth dynamics of meme popularity exhibit characteristically different behaviors: linear, “S”-shape and exponential growths. Inspired by cell population growth model in microbial ecology, I construct a base growth model for meme popularity in OSNs. Then I incorporate human interest dynamics into the base model and propose a hybrid model which contains a small number of free parameters. The model successfully predicts the various distinct meme growth dynamics. At last, I propose a nonlinear dynamics model to characterize the controlling of WNT signaling pathway in the differentiation of neural progenitor cells. The model is able to predict experiment results and shed light on the understanding of WNT regulation mechanisms.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Redes sociais online : extração de conhecimento e análise espaço-temporal de eventos de difusão de informação

    Get PDF
    Orientador: Fernando José Von ZubenDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Com o surgimento e a popularização de Redes Sociais Online e de Serviços de Redes Sociais, pesquisadores da área de computação têm encontrado um campo fértil para o desenvolvimento de trabalhos com grande volume de dados, modelos envolvendo múltiplos agentes e dinâmicas espaço-temporais. Entretanto, mesmo com significativo elenco de pesquisas já publicadas no assunto, ainda existem aspectos das redes sociais cuja explicação é incipiente. Visando o aprofundamento do conhecimento da área, este trabalho investiga fenômenos de compartilhamento coletivo na rede, que caracterizam eventos de difusão de informação. A partir da observação de dados reais oriundos do serviço online Twitter, tais eventos são modelados, caracterizados e analisados. Com o uso de técnicas de aprendizado de máquina, são encontrados padrões nos processos espaço-temporais da rede, tornando possível a construção de classificadores de mensagens baseados em comportamento e a caracterização de comportamentos individuais, a partir de conexões sociaisAbstract: With the advent and popularization of Online Social Networks and Social Networking Services, computer science researchers have found fertile field for the development of studies using large volumes of data, multiple agents models and spatio-temporal dynamics. However, even with a significant amount of published research on the subject, there are still aspects of social networks whose explanation is incipient. In order to deepen the knowledge of the area, this work investigates phenomena of collective sharing on the network, characterizing information diffusion events. From the observation of real data obtained from the online service Twitter, we collect, model and characterize such events. Finally, using machine learning and computational data analysis, patterns are found on the network's spatio-temporal processes, making it possible to classify a message's topic from users behaviour and the characterization of individual behaviour, from social connectionsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    Learning Dynamic Network Models for Complex Social Systems

    Get PDF
    Human societies are inherently complex and highly dynamic, resulting in rapidly changing social networks, containing multiple types of dyadic interactions. Analyzing these time-varying multiplex networks with approaches developed for static, single layer networks often produces poor results. To address this problem, our approach is to explicitly learn the dynamics of these complex networks. This dissertation focuses on five problems: 1) learning link formation rates; 2) predicting changes in community membership; 3) using time series to predict changes in network structure; 4) modeling coevolution patterns across network layers and 5) extracting information from negative layers of a multiplex network. To study these problems, we created a rich dataset extracted from observing social interactions in the massively multiplayer online game Travian. Most online social media platforms are optimized to support a limited range of social interactions, primarily focusing on communication and information sharing. In contrast, relations in massively-multiplayer online games (MMOGs) are often formed during the course of gameplay and evolve as the game progresses. To analyze the players\u27 behavior, we constructed multiplex networks with link types for raid, communication, and trading. The contributions of this dissertation include 1) extensive experiments on the dynamics of networks formed from diverse social processes; 2) new game theoretic models for community detection in dynamic networks; 3) supervised and unsupervised methods for link prediction in multiplex coevolving networks for both positive and negative links. We demonstrate that our holistic approach for modeling network dynamics in coevolving, multiplex networks outperforms factored methods that separately consider temporal and cross-layer patterns

    Computing tie strength

    Get PDF
    Relationships make social media social. But, not all relationships are created equal. We have colleagues with whom we correspond intensely, but not deeply; we have childhood friends we consider close, even if we fell out of touch. Social media, however, treats everybody the same: someone is either a completely trusted friend or a total stranger, with little or nothing in between. In reality, relationships fall everywhere along this spectrum, a topic social science has investigated for decades under the name tie strength, a term for the strength of a relationship between two people. Despite many compelling findings along this line of research, social media does not incorporate tie strength or its lessons. Neither does most research on large-scale social phenomena. In social network analyses, a link either exists or not. Relationships have few properties of their own. Simply put, we do not understand a basic property of relationships expressed online. This dissertation addresses this problem, merging the theories behind tie strength with the data from social media. I show how to reconstruct tie strength from digital traces in online social media, and how to apply it as a tool in design and analysis. Specifically, this dissertation makes three contributions. First, it offers a rich, high-accuracy and general way to reconstruct tie strength from digital traces, traces like recency and a message???s emotional content. For example, the model can split users into strong and weak ties with nearly 89% accuracy. I argue that it also offers us a chance to rethink many of social media???s most fundamental design elements. Next, I showcase an example of how we can redesign social media using tie strength: a Twitter application open to anyone on the internet which puts tie strength at the heart of its design. Through this application, called We Meddle, I show that the tie strength model generalizes to a new online community, and that it can solve real people???s practical problems with social media. Finally, I demonstrate that modeling tie strength is an important new tool for analyzing large-scale social phenomena. Specifically, I show that real-life diffusion in online networks depends on tie strength (i.e., it depends on social relationships). As a body of work, diffusion studies make a big simplifying assumption: simple stochastic rules govern person-to-person transmission. How does a disease spread? With constant probability. How does a chain letter diffuse? As a branching process. I present a case where this simplifying assumption does not hold. The results challenge the macroscopic diffusion properties in today???s literature, and they hint at a nest of complexity below a placid stochastic surface. It may be fair to see this dissertation as linking the online to the offline; that is, it connects the traces we leave in social media to how we feel about relationships in real life
    corecore