31,642 research outputs found

    ASYMP: Fault-tolerant Mining of Massive Graphs

    Full text link
    We present ASYMP, a distributed graph processing system developed for the timely analysis of graphs with trillions of edges. ASYMP has several distinguishing features including a robust fault tolerance mechanism, a lockless architecture which scales seamlessly to thousands of machines, and efficient data access patterns to reduce per-machine overhead. ASYMP is used to analyze the largest graphs at Google, and the graphs we consider in our empirical evaluation here are, to the best of our knowledge, the largest considered in the literature. Our experimental results show that compared to previous graph processing frameworks at Google, ASYMP can scale to larger graphs, operate on more crowded clusters, and complete real-world graph mining analytic tasks faster. First, we evaluate the speed of ASYMP, where we show that across a diverse selection of graphs, it runs Connected Component 3-50x faster than state of the art implementations in MapReduce and Pregel. Then we demonstrate the scalability and parallelism of this framework: first by showing that the running time increases linearly by increasing the size of the graphs (without changing the number of machines), and then by showing the gains in running time while increasing the number of machines. Finally, we demonstrate the fault-tolerance properties for the framework, showing that inducing 50% of our machines to fail increases the running time by only 41%

    Foundations of Temporal Text Networks

    Full text link
    Three fundamental elements to understand human information networks are the individuals (actors) in the network, the information they exchange, that is often observable online as text content (emails, social media posts, etc.), and the time when these exchanges happen. An extremely large amount of research has addressed some of these aspects either in isolation or as combinations of two of them. There are also more and more works studying systems where all three elements are present, but typically using ad hoc models and algorithms that cannot be easily transfered to other contexts. To address this heterogeneity, in this article we present a simple, expressive and extensible model for temporal text networks, that we claim can be used as a common ground across different types of networks and analysis tasks, and we show how simple procedures to produce views of the model allow the direct application of analysis methods already developed in other domains, from traditional data mining to multilayer network mining.Comment: 24 pages, 11 figures, 2 table

    Influence Maximization over Markovian Graphs: A Stochastic Optimization Approach

    Full text link
    This paper considers the problem of randomized influence maximization over a Markovian graph process: given a fixed set of nodes whose connectivity graph is evolving as a Markov chain, estimate the probability distribution (over this fixed set of nodes) that samples a node which will initiate the largest information cascade (in expectation). Further, it is assumed that the sampling process affects the evolution of the graph i.e. the sampling distribution and the transition probability matrix are functionally dependent. In this setup, recursive stochastic optimization algorithms are presented to estimate the optimal sampling distribution for two cases: 1) transition probabilities of the graph are unknown but, the graph can be observed perfectly 2) transition probabilities of the graph are known but, the graph is observed in noise. These algorithms consist of a neighborhood size estimation algorithm combined with a variance reduction method, a Bayesian filter and a stochastic gradient algorithm. Convergence of the algorithms are established theoretically and, numerical results are provided to illustrate how the algorithms work

    Network interpolation

    Full text link
    Given a set of snapshots from a temporal network we develop, analyze, and experimentally validate a so-called network interpolation scheme. Our method allows us to build a plausible, albeit random, sequence of graphs that transition between any two given graphs. Importantly, our model is well characterized by a Markov chain, and we leverage this representation to analytically estimate the hitting time (to a predefined distance to the target graph) and long term behavior of our model. These observations also serve to provide interpretation and justification for a rate parameter in our model. Lastly, through a mix of synthetic and real-world data experiments we demonstrate that our model builds reasonable graph trajectories between snapshots, as measured through various graph statistics. In these experiments, we find that our interpolation scheme compares favorably to common network growth models, such as preferential attachment and triadic closure.Comment: final preprin

    Deep Learning on Graphs: A Survey

    Full text link
    Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.Comment: Accepted by Transactions on Knowledge and Data Engineering. 24 pages, 11 figure

    Machine Learning on Graphs: A Model and Comprehensive Taxonomy

    Full text link
    There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area

    Streaming Graph Neural Networks

    Full text link
    Graphs are essential representations of many real-world data such as social networks. Recent years have witnessed the increasing efforts made to extend the neural network models to graph-structured data. These methods, which are usually known as the graph neural networks, have been applied to advance many graphs related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytic tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges (interactions), the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework

    Extracting Hidden Groups and their Structure from Streaming Interaction Data

    Full text link
    When actors in a social network interact, it usually means they have some general goal towards which they are collaborating. This could be a research collaboration in a company or a foursome planning a golf game. We call such groups \emph{planning groups}. In many social contexts, it might be possible to observe the \emph{dyadic interactions} between actors, even if the actors do not explicitly declare what groups they belong too. When groups are not explicitly declared, we call them \emph{hidden groups}. Our particular focus is hidden planning groups. By virtue of their need to further their goal, the actors within such groups must interact in a manner which differentiates their communications from random background communications. In such a case, one can infer (from these interactions) the composition and structure of the hidden planning groups. We formulate the problem of hidden group discovery from streaming interaction data, and we propose efficient algorithms for identifying the hidden group structures by isolating the hidden group's non-random, planning-related, communications from the random background communications. We validate our algorithms on real data (the Enron email corpus and Blog communication data). Analysis of the results reveals that our algorithms extract meaningful hidden group structures

    Conversational Networks for Automatic Online Moderation

    Full text link
    Moderation of user-generated content in an online community is a challenge that has great socio-economical ramifications. However, the costs incurred by delegating this work to human agents are high. For this reason, an automatic system able to detect abuse in user-generated content is of great interest. There are a number of ways to tackle this problem, but the most commonly seen in practice are word filtering or regular expression matching. The main limitations are their vulnerability to intentional obfuscation on the part of the users, and their context-insensitive nature. Moreover, they are language-dependent and may require appropriate corpora for training. In this paper, we propose a system for automatic abuse detection that completely disregards message content. We first extract a conversational network from raw chat logs and characterize it through topological measures. We then use these as features to train a classifier on our abuse detection task. We thoroughly assess our system on a dataset of user comments originating from a French Massively Multiplayer Online Game. We identify the most appropriate network extraction parameters and discuss the discriminative power of our features, relatively to their topological and temporal nature. Our method reaches an F-measure of 83.89 when using the full feature set, improving on existing approaches. With a selection of the most discriminative features, we dramatically cut computing time while retaining most of the performance (82.65)

    Dual Convolutional Neural Network for Graph of Graphs Link Prediction

    Full text link
    Graphs are general and powerful data representations which can model complex real-world phenomena, ranging from chemical compounds to social networks; however, effective feature extraction from graphs is not a trivial task, and much work has been done in the field of machine learning and data mining. The recent advances in graph neural networks have made automatic and flexible feature extraction from graphs possible and have improved the predictive performance significantly. In this paper, we go further with this line of research and address a more general problem of learning with a graph of graphs (GoG) consisting of an external graph and internal graphs, where each node in the external graph has an internal graph structure. We propose a dual convolutional neural network that extracts node representations by combining the external and internal graph structures in an end-to-end manner. Experiments on link prediction tasks using several chemical network datasets demonstrate the effectiveness of the proposed method
    • …
    corecore