7,621 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Belief Space Scheduling

    Get PDF
    This thesis develops the belief space scheduling framework for scheduling under uncertainty in Stochastic Collection and Replenishment (SCAR) scenarios. SCAR scenarios involve the transportation of a resource such as fuel to agents operating in the field. Key characteristics of this scenario are persistent operation of the agents, and consideration of uncertainty. Belief space scheduling performs optimisation on probability distributions describing the state of the system. It consists of three major components---estimation of the current system state given uncertain sensor readings, prediction of the future state given a schedule of tasks, and optimisation of the schedule of the replenishing agents. The state estimation problem is complicated by a number of constraints that act on the state. A novel extension of the truncated Kalman Filter is developed for soft constraints that have uncertainty described by a Gaussian distribution. This is shown to outperform existing estimation methods, striking a balance between the high uncertainty of methods that ignore the constraints and the overconfidence of methods that ignore the uncertainty of the constraints. To predict the future state of the system, a novel analytical, continuous-time framework is proposed. This framework uses multiple Gaussian approximations to propagate the probability distributions describing the system state into the future. It is compared with a Monte Carlo framework and is shown to provide similar discrimination performance while computing, in most cases, orders of magnitude faster. Finally, several branch and bound tree search methods are developed for the optimisation problem. These methods focus optimisation efforts on earlier tasks within a model predictive control-like framework. Combined with the estimation and prediction methods, these are shown to outperform existing approaches

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Evaluation and comparison of integer programming solvers for hard real-time scheduling

    Full text link
    [EN] In order to obtain a feasible schedule of a hard real-time system, heuristic based techniques are the solution of choice. In the last few years, optimization solvers have gained attention from research communities due to their capability of handling large number of constraints. Recently, some works have used integer linear programming (ILP) for solving mono processor scheduling of real-time systems. In fact, ILP is commonly used for static scheduling of multiprocessor systems. However, two main solvers are used to solve the problem indistinctly. But, which one is the best for obtaining a schedulable system for hard real-time systems? This paper makes a comparison of two well-known optimization software packages (CPLEX and GUROBI) for the problem of finding a feasible schedule on monoprocessor hard real-time systems.This work was supported under Grant PLEC2021-007609 funded by MCIN/AEI/10.13039/501100011033 and by the "European Union NextGeneration EU/PRTR"Guasque Ortega, A.; Balbastre, P. (2022). Evaluation and comparison of integer programming solvers for hard real-time scheduling. IEICE Transactions on Information and Systems. E105-D(10):1726-1733. https://doi.org/10.1587/transinf.2022EDP707317261733E105-D1

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    corecore